Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Dual Fuel Injection (DI + PFI) for Knock and EGR Dilution Limit Extension in a Boosted SI Engine

2018-09-10
2018-01-1735
Combined direct and port fuel injection (i.e., dual injection) in spark ignition engines is of increasing interest due to the advantages for fuel flexibility and the individual merits of each system for improving engine performance and reducing engine-out emissions. Greater understanding of the impact of dual injection will enable deriving the maximum benefit from the two injection systems. This study investigates the effects of dual injection on combustion, especially knock propensity and tolerance to exhaust gas recirculation (EGR) dilution at different levels of EGR. A baseline for comparison with dual injection results was made using direct injection fueling only. A splash blended E20 fuel was used for the direct injection only tests. For the dual injection tests, gasoline, representing 80% by volume of the total fuel, was injected using the direct injector, and ethanol, representing 20% by volume of the total fuel, was injected using the port fuel injector.
Journal Article

An EGR Cooler Fouling Model: Experimental Correlation and Model Uses

2017-03-28
2017-01-0535
Thermal effectiveness of Exhaust Gas Recirculation (EGR) coolers used in diesel engines can progressively decrease and stabilize over time due to inner fouling layer of the cooler tubes. Thermophoretic force has been identified as the major cause of diesel exhaust soot fouling, and models are proposed in the literature but improvements in simulation are needed especially for the long-term trend of soot deposition. To describe the fouling stabilization behavior, a removal mechanism is required to account for stabilization of the soot layer. Observations from previous experiments on surrogate circular tubes suggest there are three primary factors to determine removal mechanisms: surface temperature, thickness, and shear velocity. Based on this hypothesis, we developed a 1D CFD fouling model for predicting the thermal effectiveness reduction of real EGR coolers. The model includes the two competing mechanisms mentioned that results in fouling balance.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
X