Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
Technical Paper

Computational Fluid Dynamics Model Creation and Simulation for Class 8 Tractor-Trailers

2023-08-18
2023-01-5051
The Environmental Protection Agency (EPA), in partnership with Research Triangle Institute (RTI International) and Auto Research Center (ARC-Indy), have created digital geometries of commercially available heavy-duty tractor-trailers. The goal of this effort was to improve the agency’s understanding of aerodynamic modeling of modern trucks and to provide opportunities for more consistent engagement on computational fluid dynamics (CFD) analyses. Sleeper and day cab tractors with aerodynamic features and a 53-foot box trailer with aerodynamic technology options were scanned to create high-resolution geometries. The scanning process consisted of a combination of physical scanning with a handheld device, along with digital post-processing. The completed truck geometries are compatible with most commercial CFD software and are publicly available for modeling and analyses.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Journal Article

Estimates of In-Vehicle Task Element Times for Usability and Distraction Evaluations

2023-04-11
2023-01-0789
Engaging in visual-manual tasks such as selecting a radio station, adjusting the interior temperature, or setting an automation function can be distracting to drivers. Additionally, if setting the automation fails, driver takeover can be delayed. Traditionally, assessing the usability of driver interfaces and determining if they are unacceptably distracting (per the NHTSA driver distraction guidelines and SAE J2364) involves human subject testing, which is expensive and time-consuming. However, most vehicle engineering decisions are based on computational analyses, such as the task time predictions in SAE J2365. Unfortunately, J2365 was developed before touch screens were common in motor vehicles.
Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
Technical Paper

Impact of Miller Cycle Strategies on Combustion Characteristics, Emissions and Efficiency in Heavy-Duty Diesel Engines

2020-04-14
2020-01-1127
This study experimentally investigates the impact of Miller cycle strategies on the combustion process, emissions, and thermal efficiency in heavy-duty diesel engines. The experiments were conducted at constant engine speed, load, and engine-out NOx (1160 rev/min, 1.76 MPa net IMEP, 4.5 g/kWh) on a single cylinder research engine equipped with a fully-flexible hydraulic valve train system. Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) timing strategies were compared to a conventional intake valve profile. While the decrease in effective compression ratio associated with the use of Miller valve profiles was symmetric around bottom dead center, the decrease in volumetric efficiency (VE) was not. EIVC profiles were more effective at reducing VE than LIVC profiles. Despite this difference, EIVC and LIVC profiles with comparable VE decrease resulted in similar changes in combustion and emissions characteristics.
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

Variability in Driving Conditions and its Impact on Energy Consumption of Urban Battery Electric and Hybrid Buses

2020-04-14
2020-01-0598
Growing environmental concerns and stringent vehicle emissions regulations has created an urge in the automotive industry to move towards electrified propulsion systems. Reducing and eliminating the emission from public transportation vehicles plays a major role in contributing towards lowering the emission level. Battery electric buses are regarded as a type of promising green mass transportation as they provide the advantage of less greenhouse gas emissions per passenger. However, the electric bus faces a problem of limited range and is not able to drive throughout the day without being recharged. This research studies a public bus transit system example which servicing the city of Ann Arbor in Michigan and investigates the impact of different electrification levels on the final CO2 reduction. Utilizing models of a conventional diesel, hybrid electric, and battery electric bus, the CO2 emission for each type of transportation bus is estimated.
Technical Paper

Motor Vehicle Emission Control Quality Monitoring for On-Road Driving: Dynamic Signature Recognition of NOx & NH3 Emissions

2020-04-14
2020-01-0372
Motor vehicle emission testing during on-road driving is important to assess a vehicle’s exhaust emission control design, its compliance with Federal regulations and its impact on air quality. The U.S. Environmental Protection Agency (EPA) has been developing new approaches to screen the characteristics of vehicle dynamic emission control behaviors (its operating signature) while driving both on-road and on-dynamometer. The so-called “signature device” used for this testing is equipped with an O2/NOx sensor, thermocouple and GPS to record dynamic exhaust NOx concentration, air fuel ratio-controlled tailpipe lambda (λ), tailpipe temperature and vehicle speed (acceleration). In the early EPA research, signature screening was used to characterize a vehicle’s PCM control behaviors (cause/effect bijectivity), which help distinguish operation in normal control state-space and abnormal state-space.
Technical Paper

Real-Time Embedded Models for Simulation and Control of Clean and Fuel-Efficient Heavy-Duty Diesel Engines

2020-04-14
2020-01-0257
This paper presents a framework for modeling a modern diesel engine and its aftertreatment system which are intended to be used for real-time implementation as a virtual engine and in a model-based control architecture to predict critical variables such as fuel consumption and tailpipe emissions. The models are specifically able to capture the impact of critical control variables such as the Exhaust Gas Recirculation (EGR) valve position and fuel injection timing, as well as operating conditions of speed and torque, on the engine airpath variables and emissions during transient driving conditions. To enable real-time computation of the models, a minimal realization of the nonlinear airpath model is presented and it is coupled with a cycle averaged NOx emissions predictor to estimate feed gas NOx emissions. Then, the feedgas enthalpy is used to calculate the thermal behavior of the aftertreatment system required for prediction of tailpipe emissions.
Technical Paper

Effect of Driving Cycles on Emissions from On-Road Motorcycles

2020-04-14
2020-01-0377
Chassis dynamometer testing was conducted with three on-highway motorcycles produced for the North American market with engine displacements of 296 cc, 749 cc and 1198 cc to better inform criteria pollutant emissions inventories. The motorcycles were tested using US Tier 2 certification fuel over the Federal Test Procedure (FTP), World Motorcycle Test Cycle (WMTC) and a cycle based on a sample of real-world motorcycle driving, informally referred to as the ‘Real World Driving Cycle’ (RWDC). Emissions characterization includes composite, individual test phase and 1Hz cumulative results for various criteria pollutants for each test cycle. Overall, it was found that the higher peak speed rates and peak torque levels observed during the RWDC are more fully represented in the WMTC than the FTP. The use of the WMTC and RWDC cycles generally translated into higher emissions rates compared to the FTP and in particular for nitrogen oxides and carbon monoxide.
Journal Article

The Effect of EGR Dilution on the Heat Release Rates in Boosted Spark-Assisted Compression Ignition (SACI) Engines

2020-04-14
2020-01-1134
This paper presents an experimental investigation of the impact of EGR dilution on the tradeoff between flame and end-gas autoignition heat release in a Spark-Assisted Compression Ignition (SACI) combustion engine. The mixture was maintained stoichiometric and fuel-to-charge equivalence ratio (ϕ′) was controlled by varying the EGR dilution level at constant engine speed. Under all conditions investigated, end-gas autoignition timing was maintained constant by modulating the mixture temperature and spark timing. Experiments at constant intake pressure and constant spark timing showed that as ϕ′ is increased, lower mixture temperatures are required to match end-gas autoignition timing. Higher ϕ′ mixtures exhibited faster initial flame burn rates, which were attributed to the higher laminar flame speeds immediately after spark timing and their effect on the overall turbulent burning velocity.
Journal Article

Portable In-Cylinder Pressure Measurement and Signal Processing System for Real-Time Combustion Analysis and Engine Control

2020-04-14
2020-01-1144
This paper presents an in-cylinder pressure measurement system for cycle-to-cycle feedback combustion control purposes. Such a system uses off-the-shelf components to measure cylinder pressure and performs user-defined algorithms for heat release analysis. The working principle of the device is discussed as well as the simplifications for heat release analysis required for fast computation. The system is benchmarked against a commercially-available combustion analyzer in order to quantify the accuracy and time response. The results showed that the system is satisfactorily accurate for combustion phasing control. The main advantage, however, comes from the reduction of calculation and communication delays observed in the commercially-available system. This enables the use of cycle-to-cycle cylinder pressure-based feedback control algorithms.
Technical Paper

Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics

2019-09-15
2019-01-2139
The investigation and measurement of particle emissions from foundation brakes require the use of a special adaptation of inertia dynamometer test systems. To have proper measurements for particle mass and particle number, the sampling system needs to minimize transport losses and reduce residence times inside the brake enclosure. Existing models and spreadsheets estimate key transport losses (diffusion, turbophoretic, contractions, gravitational, bends, and sampling isokinetics). A significant limitation of such models is that they cannot assess the turbulent flow and associated particle dynamics inside the brake enclosure; which are anticipated to be important. This paper presents a Design of Experiments (DOE) approach using Computational Fluid Dynamics (CFD) to predict the flow within a dynamometer enclosure under relevant operating conditions. The systematic approach allows the quantification of turbulence intensity, mean velocity profiles, and residence times.
Technical Paper

Structural Vibration of an Elastically Supported Plate due to Excitation of a Turbulent Boundary Layer

2019-06-05
2019-01-1470
High-Reynolds number turbulent boundary layers are an important source for inducing structural vibration. Small geometric features of a structure can generate significant turbulence that result in structural vibration. In this work we develop a new method to couple a high-fidelity fluid solver with a dynamic hybrid analytical-numerical formulation for the structure. The fluid solver uses the Large-Eddy Simulation closure for the unresolved turbulence. Specifically, a local and dynamic one-equation eddy viscosity model is employed. The fluid pressure fluctuation on the structure is mapped to the dynamic structural model. The plate where the flow excitation is applied is considered as part of a larger structure. A hybrid approach based on the Component Mode Synthesis (CMS) is used for developing the new hybrid formulation. The dynamic behavior of the plate which is excited by the flow is modeled using finite elements.
Technical Paper

Real-World Emission Modeling and Validations Using PEMS and GPS Vehicle Data

2019-04-02
2019-01-0757
Portable Emission Measurement Systems (PEMS) are used by the U.S. Environmental Protection Agency (EPA) to measure gaseous and particulate mass emissions from vehicles in normal, in-use, on-the-road operation to support many of its programs, including assessing mobile source emissions compliance, emissions factor assessment for in-use fleet modeling, and collection of in-use vehicle operational data to support vehicle simulation modeling programs. This paper discusses EPA’s use of Global Positioning System (GPS) measured altitude data and electronically logged vehicle speed data to provide real-world road grade data for use as an input into the Gamma Technologies GT-DRIVE+ vehicle model. The GPS measured altitudes and the CAN vehicle speed data were filtered and smoothed to calculate the road grades by using open-source Python code and associated packages.
Technical Paper

Development of an Alternative Predictive Model for Gasoline Vehicle Particulate Matter and Particulate Number

2019-04-02
2019-01-1184
The Particulate Matter Index (PMI) is a helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and OEMs as a metric to understand the gasoline fuels impact on both sooting found on engine hardware and vehicle out emissions. This paper will explore a new method that could be used to give indication of the sooting tendency of the gasoline range fuels, called the Particulate Evaluation Index (PEI), and provide the detailed equation in its initial form. In addition, the PEI will be shown to have a good correlation agreement to PMI. The paper will then give a detailed explanation of the data used to develop it. Initial vehicle PM/PN data will also be presented that shows correlations of the indices to the vehicle response.
X