Refine Your Search

Topic

Author

Search Results

Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Two-Point Spatial Velocity Correlations in the Near-Wall Region of a Reciprocating Internal Combustion Engine

2017-03-28
2017-01-0613
Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and engine operation strategies, as well as predictive computational models. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), whose structure, similarity and dynamics have been thoroughly documented in the technical literature. Motivated by this need, this paper presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the core flow was quantified via statistical moments and two-point velocity correlations, determined at multiple distances from the wall and piston positions.
Technical Paper

Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion

2016-10-17
2016-01-2242
Pre-chambers are a means to enable lean burn combustion strategies which can increase the thermal efficiency of gasoline spark ignition internal combustion engines. A new engine concept is evaluated in this work using computational simulations of non-reacting flow. The objective of the computational study was to evaluate the feasibility of several engine design configurations combined with fuel injection strategies to create local fuel/air mixtures in the pre-chambers above the ignition and flammability limits, while maintaining lean conditions in the main combustion chamber. The current work used computational fluid dynamics to develop a novel combustion chamber geometry where the flow was evaluated through a series of six design iterations to create ignitable mixtures (based on fuel-to-air equivalence ratio, ϕ) using fuel injection profiles and flow control via the piston, cylinder head, and pre-chamber geometry.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Technical Paper

Test Method, Simulation and Micro-process Dynamic Model for Noise Analysis of Auto Hydraulic Shock Absorber

2015-06-15
2015-01-2351
In order to measure the noise of auto shock absorbers, a test bench used to detect piston-rod vibration responses of shock absorbers and measuring analyzer named SANTS-I were developed. The vibration response data was detected by bench tests, which shows that there are high-frequency violent peaks on the sine curve of piston-rod oscillating with relative low frequency. In order to explain the interior work dynamic mechanism of shock absorbers, a schematic Micro-process Dynamic Model with 10 steps particularly divided extension and compression stroke in more detail, and dynamic differential equations for each step were presented and discussed. Furthermore, numerical simulation for the inner impacts interaction between piston and damping fluid of hydraulic shock absorber was realized by ADINA software, by the establishment of a gas-liquid two-phase finite element model.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

Experimental Evaluation of the Quench Rate of AA7075

2014-04-01
2014-01-0984
The aluminum alloy 7075-T6 has the potential to be used for structural automotive body components as an alternative to boron steel. Although this alloy shows poor formability at room temperature, it has been demonstrated that hot stamping is a feasible sheet metal process that can be used to overcome the forming issues. Hot stamping is an elevated temperature forming operation in which a hot blank is formed and quenched within a stamping die. Attaining a high quench rate is a critical step of the hot stamping process and corresponds to maximum strength and corrosion resistance. This work looks at measuring the quench rate of AA7075-T6 by way of three different approaches: water, a water-cooled plate, and a bead die. The water-cooled plate and the bead die are laboratory-scale experimental setups designed to replicate the hot stamping/die quenching process.
Technical Paper

Sandwich Panels with Corrugated Core - A Lightweighting Concept with Improved Stiffness

2014-04-01
2014-01-0808
Sandwich panels with high modulus/high strength skin material and low density/low modulus core material have higher stiffness-to-weight ratio than monolithic panels. In this paper, sandwich panels with corrugated core are explored as a lightweighting concept for improved stiffness. The skin and the core materials are a high strength steel, aluminum alloy or carbon fiber-epoxy composite. The core has a triangular corrugation, a trapezoidal corrugation and a rectangular corrugation. The stiffness of the sandwich panels is analytically determined and compared with monolithic panels of equal mass. It is shown that the stiffness of the sandwich panels is 5 to 7 times higher than that of the monolithic panels.
Technical Paper

Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

2013-04-08
2013-01-0644
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Journal Article

Fatigue Behavior of Laser Welds in Lap-Shear Specimens of High Strength Low Alloy (HSLA) Steels

2009-04-20
2009-01-0028
Fatigue behavior of laser welds in lap-shear specimens of high strength low alloy (HSLA) steels is investigated based on a fatigue crack growth model. Fatigue experiments of laser welded lap-shear specimens were conducted. Analytical global stress intensity factor solutions are developed and compared with finite element computational results. A fatigue crack growth model based on the analytical local stress intensity factor solutions of kinked cracks and the Paris law for crack growth is then adopted to estimate the fatigue lives of the laser welds under cyclic loading conditions. The estimated fatigue lives are compared with the experimental results. The results indicate that the fatigue life predictions based on the fatigue crack growth model are slightly longer than the experimental results.
Technical Paper

Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets

2007-04-16
2007-01-1706
The effects of lubricant on lap shear strength of Spot Friction Welded (SFW) joints made of 6111-T4 alloys were studied. Taguchi L8 design of experiment methodology was used to determine the lubricant effects. The results showed that the lap shear strength increased by 9.9% when the lubricant was present at the top surface compared to that of the baseline (no lubricant) whereas the lap shear strength reduced by 10.2% and 10.9% when the lubricant was present in the middle and at the bottom surfaces compared to that of the baseline (no lubricant), respectively. The microstructure analysis showed a zigzag interface at the joint between the upper and the lower sheet metal for the baseline specimen, the specimens with the lubricant at the top and at the bottom. However, a straight line interface is exhibited at the joint between the upper and the lower sheet for the specimen with the lubricant in the middle. The weld nugget sizes of the lap shear tested specimens were measured.
Technical Paper

Design and Production of Mg Wheels in China

2007-04-16
2007-01-1035
The high strength-weight ratio and high damping capability of Magnesium alloys implies significant potentials for improving fuel efficiency and vehicle performance with the use Mg wheels. In this paper, a brief review is given of the current state of art in Mg wheel production, followed by a summary of the mechanical and casting properties of Mg alloys. The difficulties that hinder the wide use of Mg wheels are discussed. The R&D activities in China in the fields of Mg wheel design and casting are described. The focus of this paper is on the design and the development of a new squeeze casting process that makes it feasible to produce high-quality Mg wheels with cost efficiency. Finally, the expected commercial use of Mg wheels in the near future in Chinese motorbikes is outlined.
Technical Paper

Permanent Mold Casting and Creep Behavior of Mg - 4 Al - 4 X: (Ca, Ce, La, Sr) Alloys

2007-04-16
2007-01-1027
Creep-resistant magnesium alloys for automotive powertrain applications offer significant potential for vehicle weight reduction. In this study permanent mold casting, microstructure and creep behavior have been investigated for a series of ternary magnesium alloys (Mg-4Al-4X (X: Ca, Ce, La, Sr) wt%) and AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%). A permanent mold was instrumented with twelve thermocouples and mold temperature was monitored during the casting process. Average mold temperature increased from 200°C to 400°C during a typical alloy casting series (fifteen to twenty castings). The cast microstructure for all alloys consists of primary α-Mg globular phase surrounded by eutectic structure which is composed of intermetallic(s) and α-Mg magnesium phases. The primary cell size of the AXJ530 increased from 18 to 24 μm with increasing mold temperature and a similar trend is expected for all alloys.
Technical Paper

The Mg-Al-Ca Alloy System for Structural Applications at Elevated Temperatures

2007-04-16
2007-01-1025
Solidification paths and phase stability have been investigated in the creep resistant Mg-Al-Ca based alloys for powertrain applications. The liquidus projection and isothermal sections of the Mg-Al-Ca ternary system were determined, including a ternary (Mg, Al)2Ca intermetallic compound. The solidification of the alloys in the α-Mg primary phase field involves L→α+(Mg, Al)2Ca eutectic reaction in a wide range of compositions and is terminated with invariant reactions that form Mg2Ca or Mg17Al12 phases. The (Mg, Al)2Ca is a high temperature phase and decomposes into Mg2Ca and Al2Ca phases between 773 and 673 K, but the transformation is kinetically quite slow at temperatures below 473 K. Based on this new knowledge, alloy modifications through quaternary elemental additions to improve the solid-solution strength and aging treatments to reinforce the α-Mg phase with precipitates have been demonstrated.
Technical Paper

A Test Method for Quantifying Residual Stress Due to Heat Treatment in Metals

2006-04-03
2006-01-0319
Quantification of residual stresses is an important engineering problem impacting manufacturabilty and durability of metallic components. An area of particular concern is residual stresses that can develop during heat treatment of metallic components. Many heat treatments, especially in heat treatable cast aluminum alloys, involve a water-quenching step immediately after a solution-treatment cycle. This rapid water quench has the potential to induce high residual stresses in regions of the castings that experience large thermal gradients. These stresses may be partially relaxed during the aging portion of the heat treatment. The goal of this research was to develop a test sample and quench technique to quantify the stresses created by steep thermal gradients during rapid quenching of cast aluminum. The development and relaxation of residual stresses during the aging cycle was studied experimentally with the use of strain gauges.
Technical Paper

Pressure Reactive Piston Technology Investigation and Development for Spark Ignition Engines

2005-04-11
2005-01-1648
Variable Compression Ratio (VCR) technology has long been recognized as a method of improving Spark Ignition (SI) engine fuel economy. The Pressure Reactive Piston (PRP) assembly features a two-piece piston, with a piston crown and separate piston skirt which enclose a spring set between them. The unique feature is that the upper piston reacts to the cylinder pressure, accommodating rapid engine load changes passively. This mechanism effectively limits the peak pressures at high loads without an additional control device, while allowing the engine to operate at high compression ratio during low load conditions. Dynamometer engine testing showed that Brake Specific Fuel Consumption (BSFC) improvement of the PRP over the conventional piston ranged from 8 to 18 % up to 70% load. Knock free full load operation was also achieved. The PRP equipped engine combustion is characterized by reverse motion of the piston crown near top dead center and higher thermal efficiency.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
X