Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

An Integrated Deformed Surfaces Comparison Based Validation Framework for Simplified Vehicular CAE Models

2018-04-03
2018-01-1380
Significant progress in modeling techniques has greatly enhanced the application of computer simulations in vehicle safety. However, the fine-meshed impact models are usually complex and take lots of computational resources and time to conduct design optimization. Hence, to develop effective methods to simplify the impact models without losing necessary accuracy is of significant meaning in vehicle crashworthiness analysis. Surface deformation is frequently regarded as a critical factor to be measured for validating the accuracy of CAE models. This paper proposes an integrated validation framework to evaluate the inconsistencies between the deformed surfaces of the original model and simplified model. The geometric features and curvature information of the deformed surfaces are firstly obtained from crash simulation. Then, the magnitude and shape discrepancy information are integrated into the validation framework as the surface comparison objects.
Technical Paper

Voronoi Partitions for Assessing Fuel Consumption of Advanced Technology Engines: An Approximation of Full Vehicle Simulation on a Drive Cycle

2018-04-03
2018-01-0317
This paper presents a simple method of using Voronoi partitions for estimating vehicle fuel economy from a limited set of engine operating conditions. While one of the overarching goals of engine research is to continually improve vehicle fuel economy, evaluating the impact of a change in engine operating efficiency on the resulting fuel economy is a non-trivial task and typically requires drive cycle simulations with experimental data or engine model predictions and a full suite of engine controllers over a wide range of engine speeds and loads. To avoid the cost of collecting such extensive data, proprietary methods exist to estimate fuel economy from a limited set of engine operating conditions. This study demonstrates the use of Voronoi partitions to cluster and quantize the fuel consumed along a complex trajectory in speed and load to generate fuel consumption estimates based on limited simulation or experimental results.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

Personalized Driver Workload Estimation in Real-World Driving

2018-04-03
2018-01-0511
Drivers often engage in secondary in-vehicle activity that is not related to vehicle control. This may be functional and/or to relieve monotony. Regardless, drivers believe they can safely do so when their perceived workload is low. In this paper, we describe a data acquisition system and machine learning based algorithms to determine perceived workload. Data collected were from on-road driving in light and heavy traffic, and individual physiological measures were recorded while the driver also performed in-vehicle tasks. Initial results show how the workload function can be personalized to an individual, and what implications this may have for vehicle design.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Technical Paper

Emissions Modeling of a Light-Duty Diesel Engine for Model-Based Control Design Using Multi-Layer Perceptron Neural Networks

2017-03-28
2017-01-0601
The development of advanced model-based engine control strategies, such as economic model predictive control (eMPC) for diesel engine fuel economy and emission optimization, requires accurate and low-complexity models for controller design validation. This paper presents the NOx and smoke emissions modeling of a light duty diesel engine equipped with a variable geometry turbocharger (VGT) and a high pressure exhaust gas recirculation (EGR) system. Such emission models can be integrated with an existing air path model into a complete engine mean value model (MVM), which can predict engine behavior at different operating conditions for controller design and validation before physical engine tests. The NOx and smoke emission models adopt an artificial neural network (ANN) approach with Multi-Layer Perceptron (MLP) architectures. The networks are trained and validated using experimental data collected from engine bench tests.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Recognizing Manipulated Electronic Control Units

2015-04-14
2015-01-0202
Combatting the modification of automotive control systems is a current and future challenge for OEMs and suppliers. ‘Chip-tuning’ is a manifestation of manipulation of a vehicle's original setup and calibration. With the increase in automotive functions implemented in software and corresponding business models, chip tuning will become a major concern. Recognizing and reporting of tuned control units in a vehicle is required for technical as well as legal reasons. This work approaches the problem by capturing the behavior of relevant control units within a machine learning system called a recognition module. The recognition module continuously monitors vehicle's sensor data. It comprises a set of classifiers that have been trained on the intended behavior of a control unit before the vehicle is delivered. When the vehicle is on the road, the recognition module uses the classifier together with current data to ascertain that the behavior of the vehicle is as intended.
Journal Article

Driver Lane Change Prediction Using Physiological Measures

2015-04-14
2015-01-1403
Side swipe accidents occur primarily when drivers attempt an improper lane change, drift out of lane, or the vehicle loses lateral traction. Past studies of lane change detection have relied on vehicular data, such as steering angle, velocity, and acceleration. In this paper, we use three physiological signals from the driver to detect lane changes before the event actually occurs. These are the electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) and were determined, in prior studies, to best reflect a driver's response to the driving environment. A novel system is proposed which uses a Granger causality test for feature selection and a neural network for classification. Test results showed that for 30 lane change events and 60 non lane change events in on-the-road driving, a true positive rate of 70% and a false positive rate of 10% was obtained.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

Numerical Modeling and Simulation of the Vehicle Cooling System for a Heavy Duty Series Hybrid Electric Vehicle

2008-10-06
2008-01-2421
The cooling system of Series Hybrid Electric Vehicles (SHEVs) is more complicated than that of conventional vehicles due to additional components and various cooling requirements of different components. In this study, a numerical model of the cooling system for a SHEV is developed to investigate the thermal responses and power consumptions of the cooling system. The model is created for a virtual heavy duty tracked SHEV. The powertrain system of the vehicle is also modeled with Vehicle-Engine SIMulation (VESIM) previously developed by the Automotive Research Center at the University of Michigan. VESIM is used for the simulation of powertrain system behaviors under three severe driving conditions and during a realistic driving cycle. The output data from VESIM are fed into the cooling system simulation to provide the operating conditions of powertrain components.
Technical Paper

Off-road Vehicle Dynamic Simulation Based on Slip-Shifted On-road Tire Handling Model

2008-04-14
2008-01-0771
In this research, off-road vehicle simulation is performed with tire-soil interaction model. The predictive semi-analytical model, which is originally developed for tire-snow interaction model by Lee [4], is applied as a tire-soil interaction model and is implemented to MSC/ADAMS, commercial multi-body dynamic software. It is applied to simulate the handling maneuver of military vehicle HMMWV. Two cases are simulated with Michigan sandy loam soil property. Each case has two maneuvers, straight-line brake and step steer (J-turn). First, tire-soil interaction model and conventional on-road tire model are simulated on the flat road of the same frictional coefficient. The proposed tire-soil interaction model provided larger force under the same slip. Second, the same maneuvers are performed with real off-road frictional coefficient. The proposed tire-soil model can be validated and the behavior of the off-road vehicle can be identified through two simulation cases.
Technical Paper

Combining Energy Boundary Element with Energy Finite Element Simulations for Vehicle Airborne Noise Predictions

2008-04-14
2008-01-0269
The Energy Boundary Element Analysis (EBEA) has been utilized in the past for computing the exterior acoustic field at high frequencies (above ∼400Hz) around vehicle structures and numerical results have been compared successfully to test data [1, 2 and 3]. The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration of complex structures at high frequencies and validations have been presented in previous publications [4, 5]. In this paper the EBEA is utilized for computing the acoustic field around a vehicle structure due to external acoustic noise sources. The computed exterior acoustic field comprises the excitation for the EFEA analysis. Appropriate loading functions have been developed for representing the exterior acoustic loading in the EFEA simulations, and a formulation has been developed for considering the acoustic treatment applied on the interior side of structural panels.
Technical Paper

Fast Prediction of HCCI Combustion with an Artificial Neural Network Linked to a Fluid Mechanics Code

2006-10-16
2006-01-3298
We have developed an artificial neural network (ANN) based combustion model and have integrated it into a fluid mechanics code (KIVA3V) to produce a new analysis tool (titled KIVA3V-ANN) that can yield accurate HCCI predictions at very low computational cost. The neural network predicts ignition delay as a function of operating parameters (temperature, pressure, equivalence ratio and residual gas fraction). KIVA3V-ANN keeps track of the time history of the ignition delay during the engine cycle to evaluate the ignition integral and predict ignition for each computational cell. After a cell ignites, chemistry becomes active, and a two-step chemical kinetic mechanism predicts composition and heat generation in the ignited cells. KIVA3V-ANN has been validated by comparison with isooctane HCCI experiments in two different engines.
X