Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact Strength Analysis of Body Structure Based on a MBD-FEA Combined Method

2024-04-09
2024-01-2243
In the field of automobile development, sufficient structure strength is the most basic objective to be accomplished. Typically, method of strength analysis could be divided into static strength and dynamic strength. Analysis of static strength constitutes the major part of the development, but the supplement of dynamic strength is also dispensable to assure structural integrity. This paper presents a methodology about analyzing the impact strength of body structure based on a Multi-body Dynamics (MBD) and Finite Element Analysis (FEA) combined method. Firstly, the full vehicle MBD model consists of Curved Regular Grid (CRG) road model, Flexible Ring Tire (FTire) model and dynamic deflection-force bump stop model was built in Adams/Car. Next, Damage Initiation and Evolution Model (DIEM) failure criteria was adopted to describe material failure behavior.
Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Technical Paper

Load Simulation of the Impact Road under Durability and Misuse Conditions

2023-04-11
2023-01-0775
Road load data is an essential input to evaluate vehicle durability and strength performances. Typically, load case of pothole impact constitutes the major part in the development of structural durability. Meanwhile, misuse conditions like driving over a curb are also indispensable scenarios to complement impact strength of vehicle structures. This paper presents a methodology of establishing Multi-body Dynamics (MBD) full vehicle model in Adams/Car to acquire the road load data for use in durability and strength analysis. Furthermore, load level between durability and misuse conditions of the same Impact road was also investigated to explore the impact due to different driving maneuvers.
Journal Article

Estimating the Workload of Driving Using Video Clips as Anchors

2022-03-29
2022-01-0805
As new technology is added to vehicles and traffic congestion increases, there is a concern that drivers will be overloaded. As a result, there has been considerable interest in measuring driver workload. This can be achieved using many methods, with subjective assessments such as the NASA Task Loading Index (TLX) being most popular. Unfortunately, the TLX is unanchored, so there is no way to compare TLX values between studies, thus limiting the value of those evaluations. In response, a method was created to anchor overall workload ratings. To develop this method, 24 subjects rated the workload of clips of forward scenes collected while driving on rural, urban, and limited-access roads in relation to 2 looped anchor clips. Those clips corresponded to Level of Service (LOS) A and E (light and heavy traffic) and were assigned values of 2 and 6 respectively.
Technical Paper

The Evaluation of the Driving Capability for Drivers Based on Vehicle States and Fuzzy-ANP Model

2022-01-31
2022-01-7000
In partly autonomous driving such as level 2 or level 3 automatic driving from SAE international classification, the switching of the driving right between the human driver and the machine plays an important role in the driving process of vehicle [1]. In this paper, the data collected from vehicle states and the driving behavior of drivers is completed via a simulator and self-report questionnaires. A fuzzy analytic network process (Fuzzy-ANP) model is developed to evaluate the driving capability of the drivers in real time from vehicle states due to its direct inherent link to the change of the driving state of drivers Moreover, in this model, the idea of group decision and multi-index fusion is adopted. The questionnaire is required to identify the experimental results from the simulator. The results show that the proposed Fuzzy-ANP model can evaluate the driving capability of the participants in real time accurately.
Technical Paper

Evaluation of Strain Rate-Sensitive Constitutive Models for Simulation of Servo Stamping: Part 1 Theory

2020-10-01
2020-01-5073
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel.
Technical Paper

A Research on Multi-Disciplinary Optimization of the Vehicle Hood at Early Design Phase

2020-04-14
2020-01-0625
Vehicle hood design is a typical multi-disciplinary task. The hood has to meet the demands of different attributes like safety, dynamics, statics, and NVH (Noise, Vibration, Harshness). Multi-disciplinary optimization (MDO) of vehicle hood at early design phase is an efficient way to support right design decision and avoid late-phase design changes. However, due to lacking in CAD models, it is difficult to realize MDO at early design phase. In this research, a new method of design and optimization is proposed to improve the design efficiency. Firstly, an implicit parametric hood model is built to flexibly change shape and size of hood structure, and generate FE models automatically. Secondly, four types of stiffness analysis, one type of modal analysis, together with pedestrian head impact analysis were established to describe multi-disciplinary concern of vehicle hood design.
Technical Paper

Effect Analysis for the Uncertain Parameters on Self-Piercing Riveting Simulation Model Using Machine Learning Model

2020-04-14
2020-01-0219
Self-piercing rivets (SPR) are efficient and economical joining methods used in the manufacturing of lightweight automotive bodies. The finite element method (FEM) is a potentially effective way to assess the joining process of SPRs. However, uncertain parameters could lead to significant mismatches between the FEM predictions and physical tests. Thus, a sensitivity study on critical model parameters is important to guide the high-fidelity modeling of the SPR insertion process. In this paper, an axisymmetric FEM model is constructed to simulate the insertion process of the SPR using LS-DYNA/explicit. Then, several surrogate models are evaluated and trained using machine learning methods to represent the relations between selected inputs (e.g., material properties, interfacial frictions, and clamping force) and outputs (cross-section dimensions).
Technical Paper

A Design and Optimization Method for Pedestrian Lower Extremity Injury Analysis with the aPLI Model

2020-04-14
2020-01-0929
As pedestrian protection tests and evaluations have been officially incorporated into new C-NCAP, more stringent requirements have been placed on pedestrian protection performance. In this study, in order to reduce the injury of the vehicle front end structure to the pedestrian's lower extremity during the collision, the advanced pedestrian legform impactor (aPLI) model was used in conjunction with the finite element vehicle model for collision simulation based on the new C-NCAP legform test evaluation regulation. This paper selected the key components which have significant influences on the pedestrian's leg protection performance based on the CAE vehicle model, including front bumper, front-cover plate, upper impact pillar, impact beam and lower support plate, to form a simplified model and conducted parametric modeling based on it.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Technical Paper

Comparison between Finite Element and Hybrid Finite Element Results to Test Data for the Vibration of a Production Car Body

2019-06-05
2019-01-1530
The Hybrid Finite Element Analysis (HFEA) method is based on combining conventional Finite Element Analysis (FEA) with analytical solutions and energy methods for mid-frequency computations. The method is appropriate for computing the vibration of structures which are comprised by stiff load bearing components and flexible panels attached to them; and for considering structure-borne loadings with the excitations applied on the load bearing members. In such situations, the difficulty in using conventional FEA at higher frequencies originates from requiring a very large number of elements in order to capture the flexible wavelength of the panel members which are present in a structure. In the HFEA the conventional FEA model is modified by de-activating the bending behavior of the flexible panels in the FEA computations and introducing instead a large number of dynamic impedance elements for representing the omitted bending behavior of the panels.
Journal Article

Structural-Acoustic Modeling and Optimization of a Submarine Pressure Hull

2019-06-05
2019-01-1498
The Energy Finite Element Analysis (EFEA) has been validated in the past through comparison with test data for computing the structural vibration and the radiated noise for Naval systems in the mid to high frequency range. A main benefit of the method is that it enables fast computations for full scale models. This capability is exploited by using the EFEA for a submarine pressure hull design optimization study. A generic but representative pressure hull is considered. Design variables associated with the dimensions of the king frames, the thickness of the pressure hull in the vicinity of the excitation (the latter is considered to be applied on the king frames of the machinery room), the dimensions of the frames, and the damping applied on the hull are adjusted during the optimization process in order to minimize the radiated noise in the frequency range from 1,000Hz to 16,000Hz.
Journal Article

Closed-Form Structural Stress Solutions for Spot Welds in Square Plates under Central Bending Conditions

2019-04-02
2019-01-1114
A new closed-form structural stress solution for a spot weld in a square thin plate under central bending conditions is derived based on the thin plate theory. The spot weld is treated as a rigid inclusion and the plate is treated as a thin plate. The boundary conditions follow those of the published solution for a rigid inclusion in a square plate under counter bending conditions. The new closed-form solution indicates that structural stress solution near the rigid inclusion on the surface of the plate along the symmetry plane is larger than those for a rigid inclusion in an infinite plate and a finite circular plate with pinned and clamped outer boundaries under central bending conditions. When the radius distance becomes large and approaches to the outer boundary, the new analytical stress solution approaches to the reference stress whereas the other analytical solutions do not.
Journal Article

Finite Element Analyses of Structural Stresses near Dissimilar Spot Joints in Lap-Shear Specimens

2019-04-02
2019-01-1112
Structural stress distributions near nearly rigid, dissimilar and similar spot joints in lap-shear specimens are investigated by 3-D finite element analyses. A set of accurate closed-form structural stress solutions is first presented. The closed-form structural stress solutions were derived for a rigid inclusion in a square thin plate under various loading conditions with the weak boundary conditions along outer edges or semi-circular paths by satisfying the equilibrium conditions. Finite element analyses with different joint material behaviors, element types and mesh designs are conducted to examine the structural stress solutions near the spot joints in lap-shear specimens. The results of the finite element analyses indicate that the computational structural stress solutions on the edge of the joint depend on the joint material behavior, element type, and mesh design.
Journal Article

Modeling Static Load Distribution and Friction of Ball Bearings and BNAs: Towards Understanding the “Stick-Slip” of Rack EPAS

2019-04-02
2019-01-1240
Electric power assisted steering (EPAS) systems are widely adopted in modern vehicles to reduce the steering effort of drivers. In rack EPAS, assist torque is applied by a motor and transmitted through two key mechanical components: ball bearing and ball nut assembly (BNA) to turn the front wheels. Large combined load and manufacturing errors not only make it hard to accurately calculate the load distribution in the ball bearing and BNA for the purpose of sizing, but also make the friction behavior of EPAS gear complicated. Rack EPAS gear is well known to suffer from “stick-slip” (i.e., sticky feel sensed by the driver), which affects the user experience. “Stick-slip” is an extreme case of friction variation mainly coming from ball bearing and BNA. Finite Element Analysis (FEA) in commercial software like ANSYS is usually conducted to study the load distribution and friction of ball bearing and BNA.
Technical Paper

Measurements of the Evaporation Behavior of the Film of Fuel Blends

2018-04-03
2018-01-0290
The formation of fuel film in the combustion cylinder affects the mixing process of the air and the fuel, and the process of the combustion propagation in engines. Some models of film evaporation have been developed to predict the evaporation behavior of the film, but rarely experimental results have been produced, especially when the temperature is high. In this study, the evaporation behavior of the film of different species of oil and their blends at different temperature are observed. The 45 μL films of isooctane, 1-propanol, 1-butanol, 1-pentanol, and their blends were placed on a quartz glass substrate in the closed temperature-controlled chamber. The shape change of the film during evaporation was monitored by a high-speed camera through the window of the chamber. First, the binary blends film of isooctane and one of the other three oils were evaporated at 30 °C, 50 °C, 70 °C and 90 °C.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Journal Article

Closed-Form Structural Stress Solutions for Fatigue Life Estimations of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2017-03-28
2017-01-0470
Closed-form structural stress solutions are investigated for fatigue life estimations of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole based on three-dimensional finite element analyses. The closed-form structural stress solutions for rigid inclusions under counter bending, central bending, in-plane shear and in-plane tension are first presented. Three-dimensional finite element analyses of the lap-shear specimens with FDS joints without and with gap (with and without clearance hole) are then presented. The results of the finite element analyses indicate that the closed-form structural stress solutions are quite accurate at the critical locations near the FDS joints in lap-shear specimens without and with gap (with and without clearance hole) for fatigue life predictions.
Journal Article

Finite Element Analyses of Stress Intensity Factor Solutions for Discontinuous Gas Metal Arc Welds under Lap-Shear Loading Conditions

2017-03-28
2017-01-0475
The distributions of the mode I and mode II stress intensity factor solutions along the fronts of the pre-existing cracks of continuous and discontinuous gas metal arc welds in lap-shear specimens are investigated by three-dimensional finite element analyses. Two-dimensional plane strain finite element analyses were first carried out in order to obtain the computational stress intensity factor solutions for the idealized and realistic weld geometries as the references. Further, the stress intensity factor solutions for realistic welds obtained from the two-dimensional finite element analyses are presented for unequal sheet thicknesses for future engineering applications. Then the stress intensity factor solutions for continuous and discontinuous welds were obtained by three-dimensional finite element analyses.
X