Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact Strength Analysis of Body Structure Based on a MBD-FEA Combined Method

2024-04-09
2024-01-2243
In the field of automobile development, sufficient structure strength is the most basic objective to be accomplished. Typically, method of strength analysis could be divided into static strength and dynamic strength. Analysis of static strength constitutes the major part of the development, but the supplement of dynamic strength is also dispensable to assure structural integrity. This paper presents a methodology about analyzing the impact strength of body structure based on a Multi-body Dynamics (MBD) and Finite Element Analysis (FEA) combined method. Firstly, the full vehicle MBD model consists of Curved Regular Grid (CRG) road model, Flexible Ring Tire (FTire) model and dynamic deflection-force bump stop model was built in Adams/Car. Next, Damage Initiation and Evolution Model (DIEM) failure criteria was adopted to describe material failure behavior.
Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

Crack Detection and Section Quality Optimization of Self-Piercing Riveting

2023-04-11
2023-01-0938
The use of lightweight materials is one of the important means to reduce the quality of the vehicle, which involves the connection of dissimilar materials, such as the combination of lightweight materials and traditional steel materials. The riveting quality of self-piercing riveting (SPR) technology will directly affect the safety and durability of automobiles. Therefore, in the initial joint development process, the quality of self-piercing riveting should be inspected and classified to meet safety standards. Based on this, this paper divides the self-piercing riveting quality into riveting appearance quality and riveting section quality. Aiming at the appearance quality of riveting, the generation of cracks on the lower surface of riveting will seriously affect the riveting strength. The existing method of identifying cracks on the lower surface of riveting based on artificial vision has strong subjectivity, low efficiency and cannot be applied on a large scale.
Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Technical Paper

Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components

2023-04-11
2023-01-0723
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Technical Paper

An In-Cylinder Imaging Study of Pre-chamber Spark-Plug Flame Development in a Single-Cylinder Direct-Injection Spark-Ignition Engine

2023-04-11
2023-01-0254
Prior work in the literature have shown that pre-chamber spark plug technologies can provide remarkable improvements in engine performance. In this work, three passively fueled pre-chamber spark plugs with different pre-chamber geometries were investigated using in-cylinder high-speed imaging of spectral emission in the visible wavelength region in a single-cylinder direct-injection spark-ignition gasoline engine. The effects of the pre-chamber spark plugs on flame development were analyzed by comparing the flame progress between the pre-chamber spark plugs and with the results from a conventional spark plug. The engine was operated at fixed conditions (relevant to federal test procedures) with a constant speed of 1500 revolutions per minute with a coolant temperature of 90 oC and stoichiometric fuel-to-air ratio. The in-cylinder images were captured with a color high-speed camera through an optical insert in the piston crown.
Technical Paper

Load Simulation of the Impact Road under Durability and Misuse Conditions

2023-04-11
2023-01-0775
Road load data is an essential input to evaluate vehicle durability and strength performances. Typically, load case of pothole impact constitutes the major part in the development of structural durability. Meanwhile, misuse conditions like driving over a curb are also indispensable scenarios to complement impact strength of vehicle structures. This paper presents a methodology of establishing Multi-body Dynamics (MBD) full vehicle model in Adams/Car to acquire the road load data for use in durability and strength analysis. Furthermore, load level between durability and misuse conditions of the same Impact road was also investigated to explore the impact due to different driving maneuvers.
Journal Article

Tribological Behaviour of an Automotive Brake Pad System Under Los Angeles City Traffic Test Conditions

2022-03-29
2022-01-0769
The Los Angeles City Traffic (LACT) brake test is well known acclaimed procedure used by many vehicle manufacturers to assess the brake pad wear behavior and to investigate the Noise, Vibration and Harness (NVH) performance of the brake system. The LACT driving route consists of a set of real-world driving conditions, which has been considered representative of the US passenger vehicle market. The scope of this study is to mimic the LACT test using finite element analysis (FEA) to calculate the wear displacement based on Rhee’s theory. The Leading-edge and trailing edge of the brake pad’s wear tendency is also predicted from the simulation. The finite element model for wear simulation consists of brake system viz., Rotor, Knuckle, Pads, Anchor bracket, Piston, and Caliper.
Journal Article

A Simulation Tool for Calculation of Engine Thermal Boundary Conditions

2022-03-29
2022-01-0597
Reducing emissions and the carbon footprint of our society have become imperatives requiring the automotive industry to adapt and develop technologies to strive for a cleaner sustainable transport system and for sustainable economic prosperity. Electrified hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and range extender powertrains provide potential solutions for reducing emissions, but they present challenges in terms of thermal management. A key requirement for meeting these challenges is accurately to predict the thermal loading and temperatures of an internal combustion engine (ICE) quickly under multiple full-load and part-load conditions. Computational Fluid Dynamics (CFD) and thermal survey database methods are used to derive thermal loading of the engine structure and are well understood but typically only used at full-load conditions.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Journal Article

Development of a CAE Modeling Technique for Heavy Duty Cargo Weight using a DFSS Methodology

2022-03-29
2022-01-0774
Cargo box is one of the indispensable structures of a pickup truck which makes it capable of transporting heavy cargo weights. This heavy cargo weight plays an important role in durability performance of the box structure when subjected to road load inputs. Finite element representation for huge cargo weight is always challenging, especially in a linear model under dynamic proving ground road load durability analysis using a superposition approach. Any gap in virtual modeling technique can lead to absurd cargo box modes and hence durability results. With the existing computer aided engineering (CAE) approach, durability results could not correlate much with physical testing results. It was crucial to have the right and robust CAE modeling technique to represent the heavy cargo weight to provide the right torsional and cargo modes of the box structure and in turn good durability results.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Technical Paper

Blockage Ratio and Reynolds Number Effects on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0956
For flows around a tire rotating over a ground plane, the Reynolds number is probably the most important parameter influencing the transition mechanism leading to flow separation from the tire surface, as it determines the viscous response of the boundary layer in the vortex-wall interaction. The present work investigates the effects of Reynolds number on an isolated tire model using a commercial Computational Fluid Dynamics (CFD) code. It validates the baseline simulation for this purpose against the Particle Image Velocimetry (PIV) data from Stanford University got using a Toyota Formula 1 race car tire model. Time-resolved velocity fields and vortex structures from the PIV data are used to correlate local and global flow phenomena to identify unsteady boundary-layer separation and the subsequent flow structures. The study will highlight the pre to post critical flow regimes where the aero coefficients and vortex structure will be studied.
Technical Paper

Effects of Domain Boundary Conditions on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0961
Tire modeling has been an area of major research in automotive industries as the tires cause approximately 25% of vehicle drag. With the fast-paced growth of computational resources, Computational Fluid Dynamics (CFD) has evolved as an effective tool for aerodynamic design and development in the automotive industry. One of the main challenges in the simulation of the aerodynamics of tires is the lack of a detailed and accurate experimental setup with which to correlate. In this study, the focus is on the prediction of the aerodynamics associated with an isolated rotating Formula 1 tire and brake assembly. Literature has indicated differing mechanisms explaining the dominant features such as the wake structures and unsteadiness. Limited work has been published on the aerodynamics of a realistic tire geometry with specific emphasis on advanced turbulence closures such as the Detached Eddy Simulation (DES).
Journal Article

Application of Artificial Intelligence to Solve an Elasto-Plastic Impact Problem

2021-04-06
2021-01-0249
Artificial intelligence (AI) is dramatically changing multiple industries. AI’s potential to transform Computer-Aided Engineering (CAE) cannot be overlooked. Conventionally, Finite Element Analysis (FEA) is the simulation of any given physical phenomenon to obtain an approximate solution to a group of problems governed by Partial Differential Equations (PDE). Implementation of AI methods in this area combines human intelligence with numerical solutions to make them more efficient. This paper attempts to develop a Deep Neural Network (DNN) model to solve an elasto-plastic impact problem of a symmetric short crush tube made of three materials impacted by a moving wall. A structured learning database was established to train and validate the model using finite element simulations. Tube size, gauge and elasto-plastic material properties were used as input attributes or features. The maximum axial displacement of the tube is the target label to predict.
Journal Article

A Novel Time - Efficient Method for PMSM Efficiency Maps Calculation

2021-04-06
2021-01-0770
Accuracy of efficiency maps for permanent magnet synchronous machines depends on loss and torque calculations. Losses that occur in the stator or rotor core material as well as copper loss that occurs in the winding at high speeds are non-linear, and can be predicted by Finite Element Analysis (FEA) precisely. Though prediction is precise with FEA, the technique introduces substantial computational overhead. Replacing FEA with analytical estimates of the losses expedites loss modeling, but reduces precision of loss estimates, making efficiency calculations less precise as well. The prediction method proposed in this paper potentially offers accuracy similar to that attained using FEA while reducing the computational overhead typically required.
Journal Article

Dynamic Modelling of Multiphase Machines Based on the VSD Transformation

2021-04-06
2021-01-0774
Multiphase machines continue to increase in popularity in high power applications due to their proven benefits compared to their three-phase counterparts. However, with the increased phase number and, therefore, the increased number of degrees of freedom, the complexity of both modelling and control strategies significantly increases. This paper proposes a dynamic modelling method for six-phase interior permanent magnet machines using the vector space decomposition transformation, which can be extended to machines with any number of phases. The proposed technique considers the nonlinear characteristics of the machine, such as spatial harmonics, magnetic saturation, and cross-coupling, which are based on flux linkage look-up tables from finite element analysis. The main contribution of this paper is the consideration of the effect of harmonic components and asymmetries within the machine windings on losses.
Technical Paper

Evaluation of Strain Rate-Sensitive Constitutive Models for Simulation of Servo Stamping: Part 1 Theory

2020-10-01
2020-01-5073
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
X