Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Technical Paper

Reaction Times to Body-Color Brake Lamps

1993-03-01
930725
Body-color brake lamps are lamps that in their off state match the body color of the car. When energized, all body-color lamps, as well as conventional lamps, appear bright red. The speed of response to a body-color brake lamp may differ from the speed of response to a conventional lamp for two reasons. The first is that the difference between off-and on-state luminances varies primarily with off-state luminance. When the difference is larger than for the conventional lamp, the increased luminance contrast may speed reaction time. The other reason that responses for the two types of lamps may differ is the greater chromaticity contrast that body-color lamps have between their on and off states. This study separately evaluated the effects of luminance contrast and chromaticity contrast for body-color brake lamps.
Technical Paper

Rearview Mirror Reflectivity and the Quality of Distance Information Available to Drivers

1993-03-01
930721
In two experiments, we examined the possibility that rearview mirror reflectivity influences drivers' perceptions of the distance to following vehicles. In the first experiment, subjects made magnitude estimates of the distance to a vehicle seen in a variable-reflectance rearview mirror. Reflectivity had a significant effect on the central tendency of subjects' judgments: distance estimates were greater when reflectivity was lower. There was no effect of reflectivity on the variability of judgments. In the second experiment, subjects were required to decide, under time pressure, whether a vehicle viewed in a variable-reflectance rearview mirror had been displaced toward them or away from them when they were shown two views of the vehicle in quick succession. We measured the speed and accuracy of their responses. Mirror reflectivity did not affect speed or accuracy, but it did cause a bias in the type of errors that subjects made.
X