Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Survey of Automotive Privacy Regulations and Privacy-Related Attacks

2019-04-02
2019-01-0479
Privacy has been a rising concern. The European Union has established a privacy standard called General Data Protection Regulation (GDPR) in May 2018. Furthermore, the Facebook-Cambridge Analytica data incident made headlines in March 2018. Data collection from vehicles by OEM platforms is increasingly popular and may offer OEMs new business models but it comes with the risk of privacy leakages. Vehicular sensor data shared with third-parties can lead to misuse of the requested data for other purposes than stated/intended. There exists a relevant regulation document introduced by the Alliance of Automobile Manufacturers (“Auto Alliance”), which classifies the vehicular sensors used for data collection as covered and non-sensitive parameters.
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Evaluation of Different ADAS Features in Vehicle Displays

2019-04-02
2019-01-1006
The current study presents the results of an experiment on driver performance including reaction time, eye-attention movement, mental workload, and subjective preference when different features of Advanced Driver Assistance Systems (ADAS) warnings (Forward Collision Warning) are displayed, including different locations (HDD (Head-Down Display) vs HUD (Head-Up Display)), modality of warning (text vs. pictographic), and a new concept that provides a dynamic bird’s eye view for warnings. Sixteen drivers drove a high-fidelity driving simulator integrated with display prototypes of the features. Independent variables were displayed as modality, location, and dynamics of the warnings with driver performance as the dependent variable including driver reaction time to the warning, EORT (Eyes-Off-Road-Time) during braking after receiving the warning, workload and subject preference.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

A Study of Age-Related Thoracic Injury in Frontal Crashes using Analytic Morphomics

2018-04-03
2018-01-0549
The purpose of this study was to use detailed medical information to evaluate thoracic injuries in elderly patients in real world frontal crashes. In this study, we used analytic morphomics to predict the effect of torso geometry on rib fracture, a major source of injury for the elderly. Analytic morphomics extracts body features from computed tomography (CT) scans of patients in a semi-automated fashion. Thoracic injuries were examined in front row occupants involved in frontal crashes from the International Center for Automotive Medicine (ICAM) database. Among these occupants, two age groups (age < 60 yr. [Nonelderly] and age ≥ 60 yr. [Elderly]) who suffered severe thoracic injury were analyzed. Regression analyses were conducted to investigate injury outcomes using variables for vehicle, demographics, and morphomics. Compared to the nonelderly group, the elderly group sustained more rib fractures.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Voronoi Partitions for Assessing Fuel Consumption of Advanced Technology Engines: An Approximation of Full Vehicle Simulation on a Drive Cycle

2018-04-03
2018-01-0317
This paper presents a simple method of using Voronoi partitions for estimating vehicle fuel economy from a limited set of engine operating conditions. While one of the overarching goals of engine research is to continually improve vehicle fuel economy, evaluating the impact of a change in engine operating efficiency on the resulting fuel economy is a non-trivial task and typically requires drive cycle simulations with experimental data or engine model predictions and a full suite of engine controllers over a wide range of engine speeds and loads. To avoid the cost of collecting such extensive data, proprietary methods exist to estimate fuel economy from a limited set of engine operating conditions. This study demonstrates the use of Voronoi partitions to cluster and quantize the fuel consumed along a complex trajectory in speed and load to generate fuel consumption estimates based on limited simulation or experimental results.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Journal Article

Cost-Effective Reduction of Greenhouse Gas Emissions via Cross-Sector Purchases of Renewable Energy Certificates

2017-03-28
2017-01-0246
Over half of the greenhouse gas (GHG) emissions in the United States come from the transportation and electricity generation sectors. To analyze the potential impact of cross-sector cooperation in reducing these emissions, we formulate a bi-level optimization model where the transportation sector can purchase renewable energy certificates (REC) from the electricity generation sector. These RECs are used to offset emissions from transportation in lieu of deploying high-cost fuel efficient technologies. The electricity generation sector creates RECs by producing additional energy from renewable sources. This additional renewable capacity is financed by the transportation sector and it does not impose additional cost on the electricity generation sector. Our results show that such a REC purchasing regime significantly reduces the cost to society of reducing GHG emissions. Additionally, our results indicate that a REC purchasing policy can create electricity beyond actual demand.
Journal Article

Reduction of Steering Effort in the Event of EPAS Failure using Differential Braking Assisted Steering

2017-03-28
2017-01-1489
Electric Power Assisted Steering (EPAS) is widely adopted in modern vehicles to reduce steering effort. It is probable that some EPAS systems will experience a shutdown due to reliability issues stemming from electrical and/or electronic components. In the event of EPAS failure, power assist becomes unavailable and the steering system reverts to a fully manual state, leading to excessive steering torque demands from the driver to maneuver the vehicle at lower speeds, i.e., under 30 mph. This situation has resulted in dozens of reported crashes and several OEM safety recalls in the past few years. Inspired by recent work which utilizes independent driving torque of in-wheel-motor vehicles to reduce steering torque, this paper proposes the use of Differential Braking Assisted Steering (DBAS) to alleviate steep increases in steering torque upon EPAS failure. DBAS requires software upgrades with minimal hardware modification to EPAS, which is preferable for a backup system.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Journal Article

Numerical Study on Flash Boiling Spray of Multi-Hole Injector

2017-03-28
2017-01-0841
Flash boiling spray is effective in improving the atomization and evaporation characteristics for gasoline direct injection engines. However, for a multi-hole injector the morphology structure of spray has an obvious change with the fuel temperature increasing or the ambient pressure decreasing, which influences the process of mixture formation and flame propagation. Specially, the spray collapses with both long penetration and a narrow spray angle above certain high superheat degree, which deteriorates air/fuel mixing and hence increases emissions. It is not desired for engine applications while the mechanism of spray structure transformation for multi-hole injector still remains unclear. In the present study, a systematic flash boiling spray model for multi-hole injector is built to investigate the flash boiling spray of multi-hole injector.
Journal Article

Accuracy and Robustness of Parallel Vehicle Mass and Road Grade Estimation

2017-03-28
2017-01-1586
A variety of vehicle controls, from active safety systems to power management algorithms, can greatly benefit from accurate, reliable, and robust real-time estimates of vehicle mass and road grade. This paper develops a parallel mass and grade (PMG) estimation scheme and presents the results of a study investigating its accuracy and robustness in the presence of various noise factors. An estimate of road grade is calculated by comparing the acceleration as measured by an on-board longitudinal accelerometer with that obtained by differentiation of the undriven wheel speeds. Mass is independently estimated by means of a longitudinal dynamics model and a recursive least squares (RLS) algorithm using the longitudinal accelerometer to isolate grade effects. To account for the influences of acceleration-induced vehicle pitching on PMG estimation accuracy, a correction factor is developed from controlled tests under a wide range of throttle levels.
Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Journal Article

Low-Order Contact Load Distribution Model for Ball Nut Assemblies

2016-04-05
2016-01-1560
Ball nut assemblies (BNAs) are used in a variety of applications, e.g., automotive, aerospace and manufacturing, for converting rotary motion to linear motion (or vice versa). In these application areas, accurate characterization of the dynamics of BNAs using low-order models is very useful for performance simulation and analyses. Existing low-order contact load models of BNAs are inadequate, partly because they only consider the axial deformations of the screw and nut. This paper presents a low-order load distribution model for BNAs which considers the axial, torsional and lateral deformations of the screw and nut. The screw and nut are modeled as finite element beams, while Hertzian Contact Theory is used to model the contact condition between the balls and raceways of the screw and nut. The interactions between the forces and displacements of the screw and nut and those at the ball-raceway contact points are established using transformation matrices.
X