Refine Your Search

Topic

Author

Search Results

Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Assessing Driver Distraction: Enhancements of the ISO 26022 Lane Change Task to Make its Difficulty Adjustable

2023-04-11
2023-01-0791
The Lane Change Task (LCT) provides a simple, scorable simulation of driving, and serves as a primary task in studies of driver distraction. It is widely accepted, but somewhat limited in functionality, a problem this project partially overcomes. In the Lane Change Task, subjects drive along a road with 3 lanes in the same direction. Periodically, signs appear, indicating in which of the 3 lanes the subject should drive, which changes from sign to sign. The software is plug-and-play for a current Windows computer with a Logitech steering/pedal assembly, even though the software was written 18 years ago. For each timestamp in a trial, the software records the steering wheel angle, speed, and x and y coordinates of the subject. A limitation of the LCT is that few characteristics of this useful software can be readily modified as only the executable code is available (on the ISO 26022 website), not the source code.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

Neural Network Model to Predict the Thermal Operating Point of an Electric Vehicle

2023-04-11
2023-01-0134
The automotive industry widely accepted the launch of electric vehicles in the global market, resulting in the emergence of many new areas, including battery health, inverter design, and motor dynamics. Maintaining the desired thermal stress is required to achieve augmented performance along with the optimal design of these components. The HVAC system controls the coolant and refrigerant fluid pressures to maintain the temperatures of [Battery, Inverter, Motor] in a definite range. However, identifying the prominent factors affecting the thermal stress of electric vehicle components and their effect on temperature variation was not investigated in real-time. Therefore, this article defines the vector electric vehicle thermal operating point (EVTHOP) as the first step with three elements [instantaneous battery temperature, instantaneous inverter temperature, instantaneous stator temperature].
Journal Article

Estimates of In-Vehicle Task Element Times for Usability and Distraction Evaluations

2023-04-11
2023-01-0789
Engaging in visual-manual tasks such as selecting a radio station, adjusting the interior temperature, or setting an automation function can be distracting to drivers. Additionally, if setting the automation fails, driver takeover can be delayed. Traditionally, assessing the usability of driver interfaces and determining if they are unacceptably distracting (per the NHTSA driver distraction guidelines and SAE J2364) involves human subject testing, which is expensive and time-consuming. However, most vehicle engineering decisions are based on computational analyses, such as the task time predictions in SAE J2365. Unfortunately, J2365 was developed before touch screens were common in motor vehicles.
Technical Paper

Performance of DSRC V2V Communication Networks in an Autonomous Semi-Truck Platoon Application

2021-04-06
2021-01-0156
Autonomy for multiple trucks to drive in a fixed-headway platoon formation is achieved by adding precision GPS and V2V communications to a conventional adaptive cruise control (ACC) system. The performance of the Cooperative ACC (CACC) system depends heavily on the reliability of the underlying V2V communications network. Using data recorded on precision-instrumented trucks at both ACM and NCAT test tracks, we provide an understanding of various effects on V2V network performance: Occlusions - non-line-of-sight (NLOS) between the Tx and Rx antenna may cause network signal loss. Rain - water droplets in the air may cause network signal degradation. Antenna position - antennas at higher elevation may have less ground clutter to deal with. RF interference - interference may cause network packet loss. GPS outage - outages caused by tree cover, tunnels, etc. may result in degraded performance. Road curvature - curves may affect antenna diversity.
Technical Paper

Using Deep Learning to Predict the Engine Operating Point in Real-Time

2021-04-06
2021-01-0186
The engine operating point (EOP), which is determined by the engine speed and torque, is an important part of a vehicle's powertrain performance and it impacts FC, available propulsion power, and emissions. Predicting instantaneous EOP in real-time subject to dynamic driver behaviour and environmental conditions is a challenging problem, and in existing literature, engine performance is predicted based on internal powertrain parameters. However, a driver cannot directly influence these internal parameters in real-time and can only accommodate changes in driving behaviour and cabin temperature. It would be beneficial to develop a direct relationship between the vehicle-level parameters that a driver could influence in real-time, and the instantaneous EOP. Such a relationship can be exploited to dynamically optimize engine performance.
Journal Article

A Visual-Vestibular Model to Predict Motion Sickness Response in Passengers of Autonomous Vehicles

2021-04-06
2021-01-0104
Multiple models to estimate motion sickness (MS) have been proposed in the literature; however, few capture the influence of visual cues, limiting the models’ ability to predict MS that closely matches experimental MS data. This is especially significant in the presence of conflicts between visual and vestibular sensory signals. This paper provides an analysis of the gaps within existing MS estimation models and addresses these gaps by proposing the visual-vestibular motion sickness (VVMS) model. In this paper, the structure of the VVMS model, associated model parameters, and mathematical and physiological justification for selecting these parameters are presented. The VVMS model integrates vestibular sensory dynamics, visual motion perception, and visual-vestibular cue conflict to determine the conflict between the sensed and true vertical orientation of the passenger.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Technical Paper

Evaluation of Different ADAS Features in Vehicle Displays

2019-04-02
2019-01-1006
The current study presents the results of an experiment on driver performance including reaction time, eye-attention movement, mental workload, and subjective preference when different features of Advanced Driver Assistance Systems (ADAS) warnings (Forward Collision Warning) are displayed, including different locations (HDD (Head-Down Display) vs HUD (Head-Up Display)), modality of warning (text vs. pictographic), and a new concept that provides a dynamic bird’s eye view for warnings. Sixteen drivers drove a high-fidelity driving simulator integrated with display prototypes of the features. Independent variables were displayed as modality, location, and dynamics of the warnings with driver performance as the dependent variable including driver reaction time to the warning, EORT (Eyes-Off-Road-Time) during braking after receiving the warning, workload and subject preference.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Technical Paper

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles

2017-03-28
2017-01-1660
Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 1

2016-04-05
2016-01-0183
Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
Technical Paper

Statistical Modeling of Automotive Seat Shapes

2016-04-05
2016-01-1436
Automotive seats are commonly described by one-dimensional measurements, including those documented in SAE J2732. However, 1-D measurements provide minimal information on seat shape. The goal of this work was to develop a statistical framework to analyze and model the surface shapes of seats by using techniques similar to those that have been used for modeling human body shapes. The 3-D contour of twelve driver seats of a pickup truck and sedans were scanned and aligned, and 408 landmarks were identified using a semi-automatic process. A template mesh of 18,306 vertices was morphed to match the scan at the landmark positions, and the remaining nodes were automatically adjusted to match the scanned surface. A principal component (PC) analysis was performed on the resulting homologous meshes. Each seat was uniquely represented by a set of PC scores; 10 PC scores explained 95% of the total variance. This new shape description has many applications.
Journal Article

Measurement and Modeling of Perceived Gear Shift Quality for Automatic Transmission Vehicles

2014-05-09
2014-01-9125
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Journal Article

Accessibility and User Performance Modeling for Inclusive Transit Bus Design

2014-04-01
2014-01-0463
The purpose of this paper is to demonstrate the impact of low- floor bus seating configuration, passenger load factor (PLF) and passenger characteristics on individual boarding and disembarking (B-D) times -a key component of vehicle dwell time and overall transit system performance. A laboratory study was conducted using a static full-scale mock-up of a low-floor bus. Users of wheeled mobility devices (n=48) and walking aids (n=22), and visually impaired (n=17) and able-bodied (n=17) users evaluated three bus layout configurations at two PLF levels yielding information on B-D performance. Statistical regression models of B-D times helped quantify relative contributions of layout, PLF, and user characteristics viz., impairment type, power grip strength, and speed of ambulation or wheelchair propulsion. Wheeled mobility device users, and individuals with lower grip strength and slower speed were impacted greater by vehicle design resulting in increased dwell time.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
X