Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Technical Paper

Experimental Testing and Mathematical Modeling of the Interconnected Hydragas Suspension System

The Moulton Hydragas suspension system improves small car ride quality by interconnecting the front and rear wheel on each side of the vehicle via a hydraulic fluid pipe between the front and rear dampers. A Hydragas system from a Rover Group MGF sports car was statically and dynamically tested to generate stiffness and damping coefficient matrices. The goal was to develop the simplest possible model of the system for use in ride quality studies. A linear model showed reasonable accuracy over restricted frequency ranges. A second model used bilinear spring and damping constants, and was more accurate for predicting force at both the front and rear units for frequencies from 1 to 8 Hz. The Hydragas system static stiffness parameters, when used in the model, caused peak force underprediction in the jounce direction. The bilinear model required increased jounce stiffness to account for hysteresis in the rubber elements of the system, and dynamic fluid flow phenomena.