Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements

A comprehensive model for sprays emerging from high-pressure swirl injectors in DISI engines has been developed accounting for both primary and secondary atomization. The model considers the transient behavior of the pre-spray and the steady-state behavior of the main spray. The pre-spray modeling is based on an empirical solid cone approach with varying cone angle. The main spray modeling is based on the Liquid Instability Sheet Atomization (LISA) approach, which is extended here to include the effects of swirl. Mie Scattering, LIF, PIV and Laser Droplet Size Analyzer techniques have been used to produce a set of experimental data for model validation. Both qualitative comparisons of the evolution of the spray structure, as well as quantitative comparisons of spray tip penetration and droplet sizes have been made. It is concluded that the model compares favorably with data under atmospheric conditions.
Technical Paper

Estimation of Air Fuel Ratio of a SI Engine from Exhaust Gas Temperature at Cold Start Condition

Wall wetting of injected fuel onto the intake manifold and cylinder wall causes unpredictable transient behavior of air-fuel mixing which results in a significant emission of unburned hydrocarbon (HC) emission during cold start operation. Heated exhaust gas oxygen (HEGO) sensors cannot measure the air-fuel ratio (A/F) of exhaust gas during cold start condition. Precise and fast estimation of air/fuel ratio of the exhaust gas is required to elucidate the wall wetting phenomena and subsequent HC formation. Refined A/F estimation can enable the control of fuel injection minimizing HC emissions during cold start conditions so that HC emissions can be minimized. A new estimator for A/F of the exhaust gas has been developed. The A/F estimator described in this study utilizes measured exhaust gas temperature and general engine parameters such as engine speed, airflow, coolant temperature, etc.