Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Structural-Acoustic Modeling and Optimization of a Submarine Pressure Hull

2019-06-05
2019-01-1498
The Energy Finite Element Analysis (EFEA) has been validated in the past through comparison with test data for computing the structural vibration and the radiated noise for Naval systems in the mid to high frequency range. A main benefit of the method is that it enables fast computations for full scale models. This capability is exploited by using the EFEA for a submarine pressure hull design optimization study. A generic but representative pressure hull is considered. Design variables associated with the dimensions of the king frames, the thickness of the pressure hull in the vicinity of the excitation (the latter is considered to be applied on the king frames of the machinery room), the dimensions of the frames, and the damping applied on the hull are adjusted during the optimization process in order to minimize the radiated noise in the frequency range from 1,000Hz to 16,000Hz.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
Technical Paper

Effect of Injection Pressure on Nozzle Internal Flow and Jet Breakup under Sub-Cooled and Flash Boiling Test Conditions

2019-04-02
2019-01-0286
Injection pressure plays a vital role in spray break-up and atomization. High spray injection pressure is usually adopted to optimize the spray atomization in gasoline direct injection fuel system. However, higher injection pressure also leads to engine emission problem related to wall wetting. To solve this problem, researchers are trying to use flash boiling method to control the spray atomization process under lower injection test conditions. However, the effect of injection pressure on the spray atomization under flash boiling test condition has not been adequately investigated yet. In this study, quantitative study of internal flow and near nozzle spray breakup were carried out based on a two-dimensional transparent nozzle via microscopic imaging and phase Doppler interferometery. N-hexane was chosen as test fluid with different injection pressure conditions. Fuel temperature varied from 112°C to 148°C, which covered a wide range of superheated conditions.
Technical Paper

Optimization of a Diesel Engine with Variable Exhaust Valve Phasing for Fast SCR System Warm-Up

2019-04-02
2019-01-0584
Early exhaust valve opening (eEVO) increases the exhaust gas temperature by faster termination of the power stroke and is considered as a potential warm up strategy for diesel engines aftertreatment thermal management. In this study, first, it is shown that when eEVO is applied, the engine main variables such as the boost pressure, exhaust gas recirculation (EGR) and injection (timing and quantity) must be re-calibrated to develop the required torque, avoid exceeding the exhaust temperature limits and keep the air fuel ratio sufficiently high. Then, a two-step procedure is presented to optimize the engine operation after the eEVO system is introduced, using a validated diesel engine model. In the first step, the engine variables are optimized at a constant eEVO shift. In the second step, optimal eEVO trajectories are calculated using Dynamic Programming (DP) for a transient test cycle.
Technical Paper

Survey of Automotive Privacy Regulations and Privacy-Related Attacks

2019-04-02
2019-01-0479
Privacy has been a rising concern. The European Union has established a privacy standard called General Data Protection Regulation (GDPR) in May 2018. Furthermore, the Facebook-Cambridge Analytica data incident made headlines in March 2018. Data collection from vehicles by OEM platforms is increasingly popular and may offer OEMs new business models but it comes with the risk of privacy leakages. Vehicular sensor data shared with third-parties can lead to misuse of the requested data for other purposes than stated/intended. There exists a relevant regulation document introduced by the Alliance of Automobile Manufacturers (“Auto Alliance”), which classifies the vehicular sensors used for data collection as covered and non-sensitive parameters.
Technical Paper

Research on the Driving Stability Control System of the Dual-Motor Drive Electric Vehicle

2019-04-02
2019-01-0436
In order to improve the steering stability of the dual-motor drive electric vehicle, Taking the yaw rate and the sideslip angle as the control variables, Using the improved two degree of freedom linear dynamic model and seven degree of freedom nonlinear vehicle dynamics model, The hierarchical structure is used to establish the dual-motor drive electric vehicle steering stability control strategy which consist of the upper direct yaw moment decision-making layer based on the sliding mode controller and the lower additional yaw moment distribution layer based on the optimization theory. The Matlab/Simulink-Carsim joint simulation platform was built. The control strategy proposed in this paper was simulated and verified under the snake test condition and double-line shift test condition.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Evaluation of Different ADAS Features in Vehicle Displays

2019-04-02
2019-01-1006
The current study presents the results of an experiment on driver performance including reaction time, eye-attention movement, mental workload, and subjective preference when different features of Advanced Driver Assistance Systems (ADAS) warnings (Forward Collision Warning) are displayed, including different locations (HDD (Head-Down Display) vs HUD (Head-Up Display)), modality of warning (text vs. pictographic), and a new concept that provides a dynamic bird’s eye view for warnings. Sixteen drivers drove a high-fidelity driving simulator integrated with display prototypes of the features. Independent variables were displayed as modality, location, and dynamics of the warnings with driver performance as the dependent variable including driver reaction time to the warning, EORT (Eyes-Off-Road-Time) during braking after receiving the warning, workload and subject preference.
Technical Paper

Heat Transfer Characteristics of Gas Cooler in a CO2 Automobile Heat Pump System

2019-04-02
2019-01-0912
An automobile heat pump system with conventional refrigerant (HFC-134a or HFO-1234yf) suffers significantly diminishment of heating capacity and system efficiency as the ambient temperature decreases. Natural refrigerant CO2 (GWP = 1) is considered as a promising alternative to HFC-134a in automobile air conditioning (MAC) applications with environmentally friendly advantage. In addition, CO2 automobile heat pump system is a promising heat pump technology for EVs with great heating advantages in a cold climate. This study aims to investigate the supercritical heat transfer characteristics of a compact micro-channel gas cooler applied in an automobile CO2 heat pump system. A simulation model of automobile gas cooler was developed by using segment-by-segment method, and validated by experimental results from Series Gas cooler (SGC) and One Gas cooler (OGC) CO2 heat pump systems. The error of heating capacity between calculated results and experimental results was less than 7%.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

A High Reliable Automated Percussive Riveting System for Aircraft Assembly

2019-03-19
2019-01-1335
Percussive riveting is a widely used way of fastening in the field of aircraft assembly, which used to be done manually. Nowadays, replacing the traditional percussive riveting with automated percussive riveting becomes a trend worldwide, which improves the quality of riveting significantly. For the automated riveting system used in aircraft assembly, reliability is of great importance, deserving to be deeply researched and fully enhanced. In this paper, a high reliable automated percussive riveting system integrated into a dual robot drilling and riveting system is proposed. The riveting system consists of the hammer part and the bucking bar part. And both parts have been optimized to enhance the reliability. In the hammer side, proximity switches are fully used to detect the state of rivet insertion.
Technical Paper

Application of the Newly Developed KLSA Model into Optimizing the Compression Ratio of a Turbocharged SI Engine with Cooled EGR

2018-10-30
2018-32-0037
Owing to the stochastic nature of engine knock, determination of the knock limited spark angle (KLSA) is difficult in engine cycle simulation. Therefore, the state-of-the-art knock modeling is mostly limited to either merely predicting knock onset (i.e. auto-ignition of end gas) or combining a simple unburned mass fraction (UMF) model representative of knock intensity (KI). In this study, a newly developed KLSA model, which takes both predictions of knock onset and intensity into account, is firstly introduced. Multiple variables including the excess air ratio, EGR ratio, cylinder pressure and the end gas temperature are included in the knock onset model. Based on the auto-ignition theory of hot spots in end gas, both the energy density and heat release rate in hot spots are taken into consideration in the KI model.
Technical Paper

Simulation of Flow Control Devices in Support of Vehicle Drag Reduction

2018-04-03
2018-01-0713
Flow control devices can enable vehicle drag reduction through the mitigation of separation and by modifying local and global flow features. Passive vortex generators (VG) are an example of a flow control device that can be designed to re-energize weakly-attached boundary layers to prevent or minimize separation regions that can increase drag. Accurate numerical simulation of such devices and their impact on the vehicle aerodynamics is an important step towards enabling automated drag reduction and shape optimization for a wide range of vehicle concepts. This work demonstrates the use of an open-source computational-fluid dynamics (CFD) framework to enable an accurate and robust evaluation of passive vortex generators in support of vehicle drag reduction. Specifically, the backlight separation of the Ahmed body with a 25° slant is used to evaluate different turbulence models including variants of the RANS, DES, and LES formulations.
Technical Paper

Infrared Borescopic Evaluation of High-Energy and Long-Duration Ignition Systems for Lean/Dilute Combustion in Heavy-Duty Natural-Gas Engines

2018-04-03
2018-01-1149
Natural gas (NG) is attractive for heavy-duty (HD) engines for reasons of cost stability, emissions, and fuel security. NG cannot be reliably compression-ignited, but conventional gasoline ignition systems are not optimized for NG and are challenged to ignite mixtures that are lean or diluted with exhaust-gas recirculation (EGR). NG ignition is particularly challenging in large-bore engines, where completing combustion in the available time is more difficult. Using two high-speed infrared (IR) cameras with borescopic access to one cylinder of an HD NG engine, the effect of ignition system on the early flame-kernel development and cycle-to-cycle variability (CCV) was investigated. Imaging in the IR yielded strong signals from water emission lines, which located the flame front and burned-gas regions and obviated image intensifiers. A 9.7-liter, six-cylinder engine was modified to enable exhaust-gas recirculation and to provide optical access.
Technical Paper

Cooling Parasitic Considerations for Optimal Sizing and Power Split Strategy for Military Robot Powered by Hydrogen Fuel Cells

2018-04-03
2018-01-0798
Military vehicles are typically armored, hence the open surface area for heat rejection is limited. Hence, the cooling parasitic load for a given heat rejection can be considerably higher and important to consider upfront in the system design. Since PEMFCs operate at low temp, the required cooling flow is larger to account for the smaller delta temperature to the air. This research aims to address the combined problem of optimal sizing of the lithium ion battery and PEM Fuel Cell stack along with development of the scalable power split strategy for small a PackBot robot. We will apply scalable physics-based models of the fuel cell stack and balance of plant that includes a realistic and scalable parasitic load from cooling integrated with existing scalable models of the lithium ion battery. This model allows the combined optimization that captures the dominant trends relevant to component sizing and system performance.
Technical Paper

Fuel Economy Analysis of Periodic Cruise Control Strategies for Power-Split HEVs at Medium and Low Speed

2018-04-03
2018-01-0871
Hybridization of vehicles is considered as the most promising technology for automakers and researchers, facing the challenge of optimizing both the fuel economy and emission of the road transport. Extensive studies have been performed on power-split hybrid electric vehicles (PS-HEVs). Despite of the fact that their excellent fuel economy performance in city driving conditions has been witnessed, a bottle neck for further improving the fuel economy of PS-HEVs has been encountered due to the inherent engine-generator-motor power circulation of the power-split system under medium-low speed cruising scenarios. Due to the special mechanical constraints of the power-split device (PSD), the conventional periodic cruising strategy like Pulse and Glide cannot be applied to PS-HEVs directly.
Technical Paper

Optimization-Based Control Strategy for Large Hybrid Electric Vehicles

2018-04-03
2018-01-1030
Electric vehicles (EVs) have become a hot research topic due to the petroleum crisis and air pollution issues, and Hybrid EVs (HEVs) equipped with engines and motors are popular nowadays due to their advantage over Pure EVs. The energy distribution between the engine and the motor is the major task of the control strategy or energy management for HEVs. Rule-based and optimization-based approaches are developed in this area, but not much work has been done for large-size super-capacitor (SC) equipped HEVs, like Hybrid buses. In this paper, a new optimization-based control strategy for a hybrid bus equipped with SCs as the energy regeneration system is presented. Considering the driving patterns of a bus that is of frequent accelerations and decelerations, it is proposed to characterize each time instant by its speed and acceleration, and the energy distribution is optimized based on these two state variables.
Technical Paper

Study of Effects of Thermal Insulation Techniques on a Catalytic Converter for Reducing Cold Start Emissions

2018-04-03
2018-01-1431
Previous work done at the University of Michigan shows the capability of the vacuum-insulated catalytic converter (VICC) to retain heat during soak and the resulting benefits in reducing cold start emissions. This paper provides an improved version of the design which overcomes some of the shortcomings of the previous model and further improves the applicability and benefits of VICC. Also, newer materials have been evaluated and their effects on heat retention and emissions have studied using the 1-D after treatment model. Cold start emissions constitute around 60% to 80% of all the hydrocarbon and CO emissions in present day vehicles. The time taken to achieve the catalyst light-off temperature in a three-way catalytic converter significantly affects the emissions and fuel efficiency. The current work aims at developing a method to retain heat in catalytic converter, thus avoiding the need for light-off and reducing cold start emissions effectively.
X