Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

Injury Severity Prediction Algorithm Based on Select Vehicle Category for Advanced Automatic Collision Notification

2022-03-29
2022-01-0834
With the evolution of telemetry technology in vehicles, Advanced Automatic Collision Notification (AACN), which detects occupants at risk of serious injury in the event of a crash and triages them to the trauma center quickly, may greatly improve their treatment. An Injury Severity Prediction (ISP) algorithm for AACN was developed using a logistic regression model to predict the probability of sustaining an Injury Severity Score (ISS) 15+ injury. National Automotive Sampling System Crashworthiness Data System (NASS-CDS: 1999-2015) and model year 2000 or later were filtered for new case selection criteria, based on vehicle body type, to match Subaru vehicle category. This new proposed algorithm uses crash direction, change in velocity, multiple impacts, seat belt use, vehicle type, presence of any older occupant, and presence of any female occupant.
Technical Paper

Development of a Reduced TPRF-E (Heptane/Isooctane/Toluene/Ethanol) Gasoline Surrogate Model for Computational Fluid Dynamic Applications in Engine Combustion and Sprays

2022-03-29
2022-01-0407
Investigating combustion characteristics of oxygenated gasoline and gasoline blended ethanol is a subject of recent interest. The non-linearity in the interaction of fuel components in the oxygenated gasoline can be studied by developing chemical kinetics of relevant surrogate of fewer components. This work proposes a new reduced four-component (isooctane, heptane, toluene, and ethanol) oxygenated gasoline surrogate mechanism consisting of 67 species and 325 reactions, applicable for dynamic CFD applications in engine combustion and sprays. The model introduces the addition of eight C1-C3 species into the previous model (Li et al; 2019) followed by extensive tuning of reaction rate constants of C7 - C8 chemistry. The current mechanism delivers excellent prediction capabilities in comprehensive combustion applications with an improved performance in lean conditions.
Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Journal Article

Tanker Truck Rollover Avoidance Using Learning Reference Governor

2021-04-06
2021-01-0256
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance.
Journal Article

Field Data Study of the Effect of Knee Airbags on Lower Extremity Injury in Frontal Crashes

2021-04-06
2021-01-0913
Knee airbags (KABs) are one countermeasure in newer vehicles that could influence lower extremity (LEX) injury, the most frequently injured body region in frontal crashes. To determine the effect of KABs on LEX injury for drivers in frontal crashes, the analysis examined moderate or greater LEX injury (AIS 2+) in two datasets. Logistic regression considered six main effect factors (KAB deployment, BMI, age, sex, belt status, driver compartment intrusion). Eighty-five cases with KAB deployment from the Crash Injury Research and Engineering Network (CIREN) database were supplemented with 8 cases from the International Center for Automotive Medicine (ICAM) database and compared to 289 CIREN non-KAB cases. All cases evaluated drivers in frontal impacts (11 to 1 o’clock Principal Direction of Force) with known belt use in 2004 and newer model year vehicles. Results of the CIREN/ICAM dataset were compared to analysis of a similar dataset from NASS-CDS (5441 total cases, 418 KAB-deployed).
Technical Paper

High-Speed Imaging Study on the Effects of Internal Geometry on High-Pressure Gasoline Sprays

2020-09-15
2020-01-2111
High-pressure gasoline injection can improve combustion efficiency and lower engine-out emissions; however, the spray characteristics of high-pressure gasoline (>500 bar) are not well known. Effects of different injector nozzle geometry on high-pressure gasoline sprays were studied using a constant volume chamber. Five nozzles with controlled internal flow features including differences in nozzle inlet rounding, conicity, and outlet diameter were investigated. Reference grade gasoline was injected at fuel pressures of 300, 600, 900, 1200, and 1500 bar. The chamber pressure was varied using nitrogen at ambient temperature and pressures of 1, 5, 10, and 20 bar. Spray development was recorded using diffuse backlit shadowgraph imaging methods.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
Technical Paper

Impact of Miller Cycle Strategies on Combustion Characteristics, Emissions and Efficiency in Heavy-Duty Diesel Engines

2020-04-14
2020-01-1127
This study experimentally investigates the impact of Miller cycle strategies on the combustion process, emissions, and thermal efficiency in heavy-duty diesel engines. The experiments were conducted at constant engine speed, load, and engine-out NOx (1160 rev/min, 1.76 MPa net IMEP, 4.5 g/kWh) on a single cylinder research engine equipped with a fully-flexible hydraulic valve train system. Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) timing strategies were compared to a conventional intake valve profile. While the decrease in effective compression ratio associated with the use of Miller valve profiles was symmetric around bottom dead center, the decrease in volumetric efficiency (VE) was not. EIVC profiles were more effective at reducing VE than LIVC profiles. Despite this difference, EIVC and LIVC profiles with comparable VE decrease resulted in similar changes in combustion and emissions characteristics.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Technical Paper

Energy, Fuels, and Cost Analyses for the M1A2 Tank: A Weight Reduction Case Study

2020-04-14
2020-01-0173
Reducing the weight of the M1A2 tank by lightweighting hull, suspension, and track results in 5.1%, 1.3%, and 0.6% tank mass reductions, respectively. The impact of retrofitting with lightweight components is evaluated through primary energy demand (PED), cost, and fuel consumption (FC). Life cycle stages included are preproduction (design, prototype, and testing), material production, part fabrication, and operation. Metrics for lightweight components are expressed as ratios comparing lightweighted and unmodified tanks. Army-defined drive cycles were employed and an FC vs. mass elasticity of 0.55 was used. Depending on the distance traveled, cost to retrofit and operate a tank with a lightweighted hull is 3.5 to 19 times the cost for just operating an unmodified tank over the same distance. PED values for the lightweight hull are 1.1 to 2 times the unmodified tank. Cost and PED ratios decrease with increasing distance.
Technical Paper

Study of Simple Detection of Gasoline Fuel Contaminants Contributing to Increase Particulate Matter Emissions

2020-04-14
2020-01-0384
The reduction of particulate emissions is one of the most important challenges facing the development of future gasoline engines. Several studies have demonstrated the impact of fuel chemical composition on the emissions of particulate matter, more particularly, the detrimental effect of high boiling point components such as heavy aromatics. Fuel contamination is likely to become a critical issue as new regulations such as Real Driving Emissions RDE involves the use of market fuel. The objective of this study is to investigate several experimental approaches to detect the presence of Diesel contamination in Gasoline which is likely to alter pollutant emissions. To achieve this, a fuel matrix composed of 12 fuels was built presenting diesel fuel in varying concentrations from 0.1 to 2% v/v. The fuel matrix was characterized using several original techniques developed in this study.
Research Report

Unsettled Legal Issues Facing Automated Vehicles

2020-02-28
EPR2020005
This SAE EDGE Research Report explores the many legal issues raised by the advent of automated vehicles. While promised to bring major changes to our lives, there are significant legal challenges that have to be overcome before they can see widespread use. A century’s worth of law and regulation were written with only human drivers in mind, meaning they have to be amended before machines can take the wheel. Everything from key federal safety regulations down to local parking laws will have to shift in the face of AVs. This report undertakes an examination of the AV laws of Nevada, California, Michigan, and Arizona, along with two failed federal AV bills, to better understand how lawmakers have approached the technology. States have traditionally regulated a great deal of what happens on the road, but does that still make sense in a world with AVs? Would the nascent AV industry be able to survive in a world with fifty potential sets of rules?
Technical Paper

Transmission Shift Strategies for Electrically Supercharged Engines

2019-04-02
2019-01-0308
This work investigates the potential improvements in vehicle fuel economy possible by optimizing gear shift strategies to leverage a novel boosting device, an electrically assisted variable speed supercharger (EAVS), also referred to as a power split supercharger (PSS). Realistic gear shift strategies, resembling those commercially available, have been implemented to control upshift and downshift points based on torque request and engine speed. Using a baseline strategy from a turbocharged application of a MY2015 Ford Escape, a vehicle gas mileage of 34.4 mpg was achieved for the FTP75 drive cycle before considering the best efficiency regions of the supercharged engine.
Technical Paper

Effect of High RON Fuels on Engine Thermal Efficiency and Greenhouse Gas Emissions

2019-04-02
2019-01-0629
Historically, greenhouse gas (GHG) emissions standards for vehicles have focused on tailpipe emissions. However, sound environmental policy requires a more holistic well-to-wheels (WTW) assessment that includes both production of the fuel and its use in the vehicle. The present research explores the net change in WTW GHG emissions associated with moving from regular octane (RO) to high octane (HO) gasoline. It considers both potential increases in refinery emissions from producing HO fuel and potential reductions in vehicle emissions through the use of fuel-efficient engines optimized for such fuel. Three refinery configurations of varying complexity and reforming capacity were studied. A set of simulations covering different levels of HO gasoline production were run for each refinery configuration.
Technical Paper

Determine 24 GHz and 77 GHz Radar Characteristics of Surrogate Grass

2019-04-02
2019-01-1012
Road Departure Mitigation System (RDMS) is a new feature in vehicle active safety systems. It may not rely only on the lane marking for road edge detection, but other roadside objects This paper discusses the radar aspect of the RDMS testing on roads with grass road edges. Since the grass color may be different at different test sites and in different seasons, testing of RDMS with real grass road edge has the repeatability issue over time and locations. A solution is to develop surrogate grass that has the same characteristics of the representative real grass. Radar can be used in RDMS to identify road edges. The surrogate grass should be similar to representative real grass in color, LIDAR characteristics, and Radar characteristics. This paper provides the 24 GHz and 77 GHz radar characteristic specifications of surrogate grass.
X