Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Dual Fuel Injection (DI + PFI) for Knock and EGR Dilution Limit Extension in a Boosted SI Engine

Combined direct and port fuel injection (i.e., dual injection) in spark ignition engines is of increasing interest due to the advantages for fuel flexibility and the individual merits of each system for improving engine performance and reducing engine-out emissions. Greater understanding of the impact of dual injection will enable deriving the maximum benefit from the two injection systems. This study investigates the effects of dual injection on combustion, especially knock propensity and tolerance to exhaust gas recirculation (EGR) dilution at different levels of EGR. A baseline for comparison with dual injection results was made using direct injection fueling only. A splash blended E20 fuel was used for the direct injection only tests. For the dual injection tests, gasoline, representing 80% by volume of the total fuel, was injected using the direct injector, and ethanol, representing 20% by volume of the total fuel, was injected using the port fuel injector.
Journal Article

Effect of Syngas (H2/CO) on SI Engine Knock under Boosted EGR and Lean Conditions

Syngas (synthesis gas) aided combustion from various fuel reforming strategies is of increasing interest in boosted lean burn SI engines due to its impact on dilution tolerance and knock resistance. Due to the interest in reformed fuels, more concrete understanding of how to leverage syngas supplementation under various lean conditions is essential to optimize engine performance and derive the most benefit from the availability of syngas in the combustion process. While the impact of syngas supplementation on combustion stability has been studied adequately, detailed understanding of the impact of syngas on knocking is still limited. Hence, this study investigates the effect of syngas (H2/CO) addition on knock tendency under boosted EGR (Exhaust Gas Recirculation) and air diluted conditions. Syngas amount is controlled on an energy basis from 0% to 15% to compare the difference between EGR and air dilution.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Alternative Fuel Property Correlations to the Honda Particulate Matter Index (PMI)

The Honda Particulate Matter Index (PMI) is a very helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and vehicle OEMs as a metric to understand a fuels impact on automotive engine sooting, in preparation for new global emissions regulations. The calculation of the index involves generating detailed hydrocarbon analysis (hydrocarbon molecular speciation) using gas chromatography laboratory equipment and the PMI calculation requires the exact list of compounds and correct naming conventions to work properly. The analytical methodology can be cumbersome, when the gas chromatography methodology has to be adjusted for new compounds that are not in the method, or if the compounds are not matching the list for quantification. Also, the method itself is relatively expensive, and not easily transferrable between labs.
Technical Paper

Experimental Study of Post Injection Scheduling for Soot Reduction in a Light-Duty Turbodiesel Engine

This experimental study involves optimization of the scheduling of diesel post injections to reduce soot emissions from a light-duty diesel engine. Previous work has shown that certain post injection schedules can reduce engine-out soot emissions when compared to conventional injection schedules for the same engine load. The purpose of this study is to investigate the impact of post injection scheduling for a range of engine conditions on a light duty multicylinder turbodiesel engine (1.9L GM ZDTH). For each engine operating condition, a test grid was developed so that only two variables (post injection duration and the commanded dwell time between main injection and post injection) were varied, with all other conditions held constant, in order to isolate the effects of the post injection schedule. Results have identified two distinct regimes of post injection schedules that reduce soot emissions.
Technical Paper

Particulate Emissions in GDI Vehicle Transients: An Examination of FTP, HWFET, and US06 Measurements

With increasingly stringent light duty particulate emissions regulations, it is of great interest to better understand particulate matter formation. Helping to build the knowledge base for a thorough understanding of particulate matter formation will be an essential step in developing effective control strategies. It is especially important to do this in such a way as to emulate real driving behaviors, including cold starts and transients. To this end, this study examined particulate emissions during transient operation in a recent model year vehicle equipped with a GDI engine. Three of the major federal test cycles were selected as evaluation schemes: the FTP, the HWFET, and the US06. These cycles capture much of the driving behaviors likely to be observed in typical driving scenarios. Measurements included particle size distributions from a TSI EEPS fast-response particle spectrometer, as well as real-time soot emissions from an AVL MSS soot sensor.
Technical Paper

Experimental Studies of EGR Cooler Fouling on a GDI Engine

Cooled EGR provides benefits in better fuel economy and lower emissions by reducing knocking tendency and decreasing peak cylinder temperature in gasoline engines. However, GDI engines have high particle emissions due to limited mixing of fuel and air, and these particle emissions can be a major source of EGR cooler fouling. In order to improve our knowledge of GDI engine EGR cooler fouling, the effects of tube geometry and coolant temperature on EGR cooler performance and degradation were studied using a four cylinder 2.0L turbocharged GDI engine. In addition, deposit microstructure was analyzed to explore the nature of deposits formed under GDI engine operation. The results of this study showed that a dented tube geometry was more effective in cooling the exhaust gas than a smooth tube due to its large surface area and turbulent fluid motion. However, more deposits were accumulated and higher effectiveness loss was observed in the dented tube.
Technical Paper

Impact of Supplemental Natural Gas on Engine Efficiency, Performance, and Emissions

In this study, the performance and emissions of a 4 cylinder 2.5L light-duty diesel engine with methane fumigation in the intake air manifold is studied to simulate a dual fuel conversion kit. Because the engine control unit is optimized to work with only the diesel injection into the cylinder, the addition of methane to the intake disrupts this optimization. The energy from the diesel fuel is replaced with that from the methane by holding the engine load and speed constant as methane is added to the intake air. The pilot injection is fixed and the main injection is varied in increments over 12 crank angle degrees at these conditions to determine the timing that reduces each of the emissions while maintaining combustion performance as measured by the brake thermal efficiency. It is shown that with higher substitution the unburned hydrocarbon (UHC) emissions can increase by up to twenty times. The NOx emissions decrease for all engine conditions, up to 53%.