Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Study of Mixed Mode Fatigue Crack Growth of Automotive Structural Adhesive BM4601

Fatigue crack growth tests have been carried out to investigate the mixed mode fatigue crack propagation behavior of an automotive structural adhesive BM4601. The tests were conducted on a compound CMM (Compact Mixed Mode) specimen under load control with 0.1 R ratio and 3Hz frequency. A long distance moving microscope was employed during testing to monitor and record the real time length of the fatigue crack in the adhesive layer. The strain energy release rates of the crack under different loading angles, crack lengths and loads were calculated by using finite element method. The pure mode I and mode II tests show that an equal value of mode I strain energy release rate results in over ten times higher FCGR (Fatigue Crack Growth Rate) than the mode II stain energy release rate does. The mixed mode tests results show that under a certain loading angle, the mixed mode FCGR is changed by changing the load, which is contrary to the find in pure mode I and mode II tests.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
Journal Article

Fatigue Life Assessment of Welded Structures with the Linear Traction Stress Analysis Approach

Structural stress methods are now widely used in fatigue life assessment of welded structures and structures with stress concentrations. The structural stress concept is based on the assumption of a global stress distribution at critical locations such as weld toes or weld throats, and there are several variants of structural stress approaches available. In this paper, the linear traction stress approach, a nodal force based structural stress approach, is reviewed first. The linear traction stress approach offers a robust procedure for extracting linear traction stress components by post-processing the finite element analysis results at any given hypothetical crack location of interest. Pertinent concepts such as mesh-insensitivity, master S-N curve, fatigue crack initiation and growth mechanisms are also discussed.