Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics

2019-09-15
2019-01-2139
The investigation and measurement of particle emissions from foundation brakes require the use of a special adaptation of inertia dynamometer test systems. To have proper measurements for particle mass and particle number, the sampling system needs to minimize transport losses and reduce residence times inside the brake enclosure. Existing models and spreadsheets estimate key transport losses (diffusion, turbophoretic, contractions, gravitational, bends, and sampling isokinetics). A significant limitation of such models is that they cannot assess the turbulent flow and associated particle dynamics inside the brake enclosure; which are anticipated to be important. This paper presents a Design of Experiments (DOE) approach using Computational Fluid Dynamics (CFD) to predict the flow within a dynamometer enclosure under relevant operating conditions. The systematic approach allows the quantification of turbulence intensity, mean velocity profiles, and residence times.
Technical Paper

Structural-Acoustic Modeling and Optimization of a Submarine Pressure Hull

2019-06-05
2019-01-1498
The Energy Finite Element Analysis (EFEA) has been validated in the past through comparison with test data for computing the structural vibration and the radiated noise for Naval systems in the mid to high frequency range. A main benefit of the method is that it enables fast computations for full scale models. This capability is exploited by using the EFEA for a submarine pressure hull design optimization study. A generic but representative pressure hull is considered. Design variables associated with the dimensions of the king frames, the thickness of the pressure hull in the vicinity of the excitation (the latter is considered to be applied on the king frames of the machinery room), the dimensions of the frames, and the damping applied on the hull are adjusted during the optimization process in order to minimize the radiated noise in the frequency range from 1,000Hz to 16,000Hz.
Technical Paper

Survey of Automotive Privacy Regulations and Privacy-Related Attacks

2019-04-02
2019-01-0479
Privacy has been a rising concern. The European Union has established a privacy standard called General Data Protection Regulation (GDPR) in May 2018. Furthermore, the Facebook-Cambridge Analytica data incident made headlines in March 2018. Data collection from vehicles by OEM platforms is increasingly popular and may offer OEMs new business models but it comes with the risk of privacy leakages. Vehicular sensor data shared with third-parties can lead to misuse of the requested data for other purposes than stated/intended. There exists a relevant regulation document introduced by the Alliance of Automobile Manufacturers (“Auto Alliance”), which classifies the vehicular sensors used for data collection as covered and non-sensitive parameters.
Technical Paper

Research on the Driving Stability Control System of the Dual-Motor Drive Electric Vehicle

2019-04-02
2019-01-0436
In order to improve the steering stability of the dual-motor drive electric vehicle, Taking the yaw rate and the sideslip angle as the control variables, Using the improved two degree of freedom linear dynamic model and seven degree of freedom nonlinear vehicle dynamics model, The hierarchical structure is used to establish the dual-motor drive electric vehicle steering stability control strategy which consist of the upper direct yaw moment decision-making layer based on the sliding mode controller and the lower additional yaw moment distribution layer based on the optimization theory. The Matlab/Simulink-Carsim joint simulation platform was built. The control strategy proposed in this paper was simulated and verified under the snake test condition and double-line shift test condition.
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Comfortable Head and Neck Postures in Reclined Seating for Use in Automobile Head Rest Design

2019-04-02
2019-01-0408
Little information is available on passenger preferences for posture and support in highly reclined seat configurations. To address this gap, a laboratory study was conducted with 24 adult passengers at seat back angles from 23 to 53 degrees. Passenger preferences for head and neck posture with and without head support were recorded. This paper presents the characteristics of the passengers’ preferred head support with respect to thorax, head, and neck posture.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Evaluation of Different ADAS Features in Vehicle Displays

2019-04-02
2019-01-1006
The current study presents the results of an experiment on driver performance including reaction time, eye-attention movement, mental workload, and subjective preference when different features of Advanced Driver Assistance Systems (ADAS) warnings (Forward Collision Warning) are displayed, including different locations (HDD (Head-Down Display) vs HUD (Head-Up Display)), modality of warning (text vs. pictographic), and a new concept that provides a dynamic bird’s eye view for warnings. Sixteen drivers drove a high-fidelity driving simulator integrated with display prototypes of the features. Independent variables were displayed as modality, location, and dynamics of the warnings with driver performance as the dependent variable including driver reaction time to the warning, EORT (Eyes-Off-Road-Time) during braking after receiving the warning, workload and subject preference.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

Sensations Associated with Motion Sickness Response during Passenger Vehicle Operations on a Test Track

2019-04-02
2019-01-0687
Motion sickness in road vehicles may become an increasingly important problem as automation transforms drivers into passengers. The University of Michigan Transportation Research Institute has developed a vehicle-based platform to study motion sickness in passenger vehicles. A test-track study was conducted with 52 participants who reported susceptibility to motion sickness. The participants completed in-vehicle testing on a 20-minute scripted, continuous drive that consisted of a series of frequent 90-degree turns, braking, and lane changes at the U-M Mcity facility. In addition to quantifying their level of motion sickness on a numerical scale, participants were asked to describe in words any motion-sickness-related sensations they experienced.
Technical Paper

Simulation of Flow Control Devices in Support of Vehicle Drag Reduction

2018-04-03
2018-01-0713
Flow control devices can enable vehicle drag reduction through the mitigation of separation and by modifying local and global flow features. Passive vortex generators (VG) are an example of a flow control device that can be designed to re-energize weakly-attached boundary layers to prevent or minimize separation regions that can increase drag. Accurate numerical simulation of such devices and their impact on the vehicle aerodynamics is an important step towards enabling automated drag reduction and shape optimization for a wide range of vehicle concepts. This work demonstrates the use of an open-source computational-fluid dynamics (CFD) framework to enable an accurate and robust evaluation of passive vortex generators in support of vehicle drag reduction. Specifically, the backlight separation of the Ahmed body with a 25° slant is used to evaluate different turbulence models including variants of the RANS, DES, and LES formulations.
Technical Paper

Infrared Borescopic Evaluation of High-Energy and Long-Duration Ignition Systems for Lean/Dilute Combustion in Heavy-Duty Natural-Gas Engines

2018-04-03
2018-01-1149
Natural gas (NG) is attractive for heavy-duty (HD) engines for reasons of cost stability, emissions, and fuel security. NG cannot be reliably compression-ignited, but conventional gasoline ignition systems are not optimized for NG and are challenged to ignite mixtures that are lean or diluted with exhaust-gas recirculation (EGR). NG ignition is particularly challenging in large-bore engines, where completing combustion in the available time is more difficult. Using two high-speed infrared (IR) cameras with borescopic access to one cylinder of an HD NG engine, the effect of ignition system on the early flame-kernel development and cycle-to-cycle variability (CCV) was investigated. Imaging in the IR yielded strong signals from water emission lines, which located the flame front and burned-gas regions and obviated image intensifiers. A 9.7-liter, six-cylinder engine was modified to enable exhaust-gas recirculation and to provide optical access.
Technical Paper

In-Vehicle Occupant Head Tracking Using aLow-Cost Depth Camera

2018-04-03
2018-01-1172
Analyzing dynamic postures of vehicle occupants in various situations is valuable for improving occupant accommodation and safety. Accurate tracking of an occupant’s head is of particular importance because the head has a large range of motion, controls gaze, and may require special protection in dynamic events including crashes. Previous vehicle occupant posture studies have primarily used marker-based optical motion capture systems or multiple video cameras for tracking facial features or markers on the head. However, the former approach has limitations for collecting on-road data, and the latter is limited by requiring intensive manual postprocessing to obtain suitable accuracy. This paper presents an automated on-road head tracking method using a single Microsoft Kinect V2 sensor, which uses a time-of-flight measurement principle to obtain a 3D point cloud representing objects in the scene at approximately 30 Hz.
Technical Paper

Cooling Parasitic Considerations for Optimal Sizing and Power Split Strategy for Military Robot Powered by Hydrogen Fuel Cells

2018-04-03
2018-01-0798
Military vehicles are typically armored, hence the open surface area for heat rejection is limited. Hence, the cooling parasitic load for a given heat rejection can be considerably higher and important to consider upfront in the system design. Since PEMFCs operate at low temp, the required cooling flow is larger to account for the smaller delta temperature to the air. This research aims to address the combined problem of optimal sizing of the lithium ion battery and PEM Fuel Cell stack along with development of the scalable power split strategy for small a PackBot robot. We will apply scalable physics-based models of the fuel cell stack and balance of plant that includes a realistic and scalable parasitic load from cooling integrated with existing scalable models of the lithium ion battery. This model allows the combined optimization that captures the dominant trends relevant to component sizing and system performance.
Technical Paper

Fuel Economy Analysis of Periodic Cruise Control Strategies for Power-Split HEVs at Medium and Low Speed

2018-04-03
2018-01-0871
Hybridization of vehicles is considered as the most promising technology for automakers and researchers, facing the challenge of optimizing both the fuel economy and emission of the road transport. Extensive studies have been performed on power-split hybrid electric vehicles (PS-HEVs). Despite of the fact that their excellent fuel economy performance in city driving conditions has been witnessed, a bottle neck for further improving the fuel economy of PS-HEVs has been encountered due to the inherent engine-generator-motor power circulation of the power-split system under medium-low speed cruising scenarios. Due to the special mechanical constraints of the power-split device (PSD), the conventional periodic cruising strategy like Pulse and Glide cannot be applied to PS-HEVs directly.
Technical Paper

Analysis and Optimization of Seat and Suspension Parameters for Occupant Ride Comfort in a Passenger Vehicle

2018-04-03
2018-01-1404
This study presents a methodology for comparative analysis of seat and suspension parameters on a system level to achieve minimum occupant head displacement and acceleration, thereby improving occupant ride comfort. A lumped-parameter full-vehicle ride model with seat structures, seat cushions and five occupants has been used. Two different vehicle masses are considered. A low amplitude pulse signal is provided as the road disturbance input. The peak vertical displacement and acceleration of the occupant’s head due to the road disturbance are determined and used as measures of ride comfort. Using a design of experiments approach, the most critical seat cushion, seat structure and suspension parameters and their interactions affecting the occupant head displacement and acceleration are determined. An optimum combination of parameters to achieve minimum peak vertical displacement and acceleration of the occupant’s head is identified using a response surface methodology.
X