Refine Your Search

Topic

Author

Search Results

Technical Paper

Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics

2019-09-15
2019-01-2139
The investigation and measurement of particle emissions from foundation brakes require the use of a special adaptation of inertia dynamometer test systems. To have proper measurements for particle mass and particle number, the sampling system needs to minimize transport losses and reduce residence times inside the brake enclosure. Existing models and spreadsheets estimate key transport losses (diffusion, turbophoretic, contractions, gravitational, bends, and sampling isokinetics). A significant limitation of such models is that they cannot assess the turbulent flow and associated particle dynamics inside the brake enclosure; which are anticipated to be important. This paper presents a Design of Experiments (DOE) approach using Computational Fluid Dynamics (CFD) to predict the flow within a dynamometer enclosure under relevant operating conditions. The systematic approach allows the quantification of turbulence intensity, mean velocity profiles, and residence times.
Technical Paper

Energy-Efficient Traction Induction Machine Control

2019-04-02
2019-01-0598
The article solves the problem of increasing the energy efficiency of the traction electric drive in the low load conditions. The set objective is achieved by analogy with internal combustion engines by decreasing the consumed energy using the amplitude control of the three-phase voltage of the induction machine. The basis of the amplitude control is laid by the constancy criterion of the overload capacity with respect to the electromagnetic torque, which provides a reliable reserve from a "breakdown" of the induction machine mode in a wide range of speeds and loads. The control system of the traction electric drive contains a reference model of electromechanical energy conversion represented by the generalized equations of the instantaneous balance of the active and reactive power and the mechanical load. The induction machine is controlled by two adaptive variables: the electromagnetic torque and the voltage amplitude.
Technical Paper

Application of Empirical Asperity Contact Model to High Fidelity Wet Clutch System Simulations

2019-04-02
2019-01-1301
Wet clutches are complex hydrodynamic devices used in both conventional and electrified drivetrain systems. They couple or de-couple powertrain components for applications such as automatic shifting, engine disconnect and torque vectoring. Clutch engagement behaviors vary greatly, depending on design parameters and operating conditions. Because of their direct impact on vehicle drivability and fuel economy, a predictive CAE model is desired for enabling analytical design verification processes. During engagement, a wet clutch transmits torque through viscous shear and asperity contact. A conventional Coulomb’s model, which is routinely utilized in shift simulations, is inadequate to capture non-linear hydrodynamic effects for higher fidelity analysis. Extensive research has been conducted over the years to derive hydrodynamic torque transfer models based on 1D squeeze film or 3D CFD. They are typically coupled with an elastic asperity contact model for mechanical torque transfer.
Journal Article

Development of Empirical Asperity Contact Model for Wet Friction Material

2019-04-02
2019-01-0346
A wet clutch couples or decouples gear elements to alter torque paths in an automatic transmission system. During the gear shifting event, the clutch torque is directly transmitted to the output shaft. Hence, clutch torque heavily influences the dynamics of the transmission. In order to evaluate the behavior of the transmission early and efficiently, the development process increasingly relies on high-fidelity transmission system simulations with added complexity. However, a wet clutch continues to be modeled using Coulomb’s friction in a typical shift simulation. Its linear framework does not physically represent non-linear hydrodynamic effects due to the presence of oil layer during clutch engagement. To make up the lack of physics, Coulomb’s clutch model often requires extensive tuning to match actual shift behaviors.
Technical Paper

Sensations Associated with Motion Sickness Response during Passenger Vehicle Operations on a Test Track

2019-04-02
2019-01-0687
Motion sickness in road vehicles may become an increasingly important problem as automation transforms drivers into passengers. The University of Michigan Transportation Research Institute has developed a vehicle-based platform to study motion sickness in passenger vehicles. A test-track study was conducted with 52 participants who reported susceptibility to motion sickness. The participants completed in-vehicle testing on a 20-minute scripted, continuous drive that consisted of a series of frequent 90-degree turns, braking, and lane changes at the U-M Mcity facility. In addition to quantifying their level of motion sickness on a numerical scale, participants were asked to describe in words any motion-sickness-related sensations they experienced.
Technical Paper

Simulation of Flow Control Devices in Support of Vehicle Drag Reduction

2018-04-03
2018-01-0713
Flow control devices can enable vehicle drag reduction through the mitigation of separation and by modifying local and global flow features. Passive vortex generators (VG) are an example of a flow control device that can be designed to re-energize weakly-attached boundary layers to prevent or minimize separation regions that can increase drag. Accurate numerical simulation of such devices and their impact on the vehicle aerodynamics is an important step towards enabling automated drag reduction and shape optimization for a wide range of vehicle concepts. This work demonstrates the use of an open-source computational-fluid dynamics (CFD) framework to enable an accurate and robust evaluation of passive vortex generators in support of vehicle drag reduction. Specifically, the backlight separation of the Ahmed body with a 25° slant is used to evaluate different turbulence models including variants of the RANS, DES, and LES formulations.
Technical Paper

Thermodynamic and Practical Benefits of Waste Energy Recovery Using an Electric Turbo-Generator Under Different Boosting Methods

2018-04-03
2018-01-0851
This paper provides insight into the tradeoffs between exhaust energy recovery and increased pumping losses from the flow restriction of the electric turbo-generator (eTG) assessed using thermodynamic principles and with a detailed GT-Power engine model. The GT-Power engine model with a positive displacement expander model was used to predict the influence of back pressure on in-cylinder residuals and combustion. The eTG is assessed for two boosting arrangements: a conventional turbocharger (TC) and an electrically assisted variable speed (EAVS) supercharger (SC). Both a low pressure (post-turbine) and high pressure (pre-turbine) eTG are considered for the turbocharged configuration. The reduction in fuel consumption (FC) possible over various drive cycles is estimated based on the steady-state efficiency of frequently visited operating points assuming all recovered energy can be reused at an engine efficiency of 30% with 10% losses in the electrical path.
Journal Article

In-Vehicle Characterization of Wet Clutch Engagement Behaviors in Automatic Transmission Systems

2018-04-03
2018-01-0395
A new generation of a planetary-gear-based automatic transmission system is designed with an increasing number of ratio steps. It requires synchronous operation of one or more wet clutches, to achieve a complex shift event. A missed synchronization results in drive torque disturbance which may be perceived by vehicle occupants as an undesirable shift shock. Accurate knowledge of clutch behaviors in an actual vehicle environment is indispensable for achieving precise clutch controls and reducing shift calibration effort. Wet clutches are routinely evaluated on an industry-standard SAE#2 tester during the clutch design process. While it is a valuable tool for screening relative frictional behaviors, clutch engagement data from a SAE#2 tester do not correlate well with vehicle shift behaviors due to the limited reproducibility of realistic slip, actuator force profiles, and lubrication conditions.
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
Technical Paper

Steering System Noise Evaluation

2016-06-15
2016-01-1832
Intermediate shaft assembly is used to connect steering gear to the steering wheel. The primary function of the intermediate shaft is to transfer torsional loads. There is a high probability of noise propagating through the Intermediate shaft to the driver. The current standard for measuring the noise is by performing vehicle level subjective evaluations. If improperly clamped at either of the yokes, a sudden change in the direction of the torsional load on the Intermediate shaft can generate a displeasing noise. Noise can also be generated from the constant velocity joint. Intermediate shaft noise can be measured using a microphone or can be correlated to acceleration values. The benefit of measuring the acceleration over sound pressure level is the reduction of complexity of the test environment and test set up. The nature of the noise in question requires the filtering of low frequency data. This paper presents a new test procedure that has been developed by General Motors.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

Fuel Economy Improvement During Cold Start Using Recycled Exhaust Heat and Electrical Energy for Engine Oil and ATF Warm-Up

2014-04-01
2014-01-0674
A numerical study is conducted to investigate the effect of changing engine oil and automatic transmission fluid (ATF) temperatures on the fuel economy during warm-up period. The study also evaluates several fuel economy improving devices that reduce the warm-up period by utilizing recycled exhaust heat or an electric heater. A computer simulation model has been developed using a multi-domain 1-D commercial software and calibrated using test data from a passenger vehicle equipped with a 2.4 / 4-cylinder engine and a 6-speed automatic transmission. The model consists of sub-models for driver, vehicle, engine, automatic transmission, cooling system, engine oil circuit, ATF circuit, and electrical system. The model has demonstrated sufficient sensitivity to the changing engine oil and ATF temperatures during the cold start portion of the Federal Test Procedure (FTP) driving cycle that is used for the fuel economy evaluation.
Technical Paper

Parametric Reduced-Order Models of Battery Pack Vibration Including Structural Variation and Pre-Stress Effects

2013-05-13
2013-01-2006
The goal of this work is to develop an efficient numerical modeling method for the vibration of hybrid electric vehicle (HEV) battery packs to support probabilistic forced response simulations and fatigue life predictions. There are two important sources of variations in HEV battery packs that affect their structural dynamic response. One source is the uncertain level of pre-stress due to bolts or welds used for joining cells within a pack. The other source is small structural variations among the cells of a battery pack. The structural dynamics of HEV battery packs are known to feature very high modal density in many frequency bands. That is because packs are composed of nominally identical cells. The high modal density combined with small, random structural variations among the cells can lead to drastic variations in the dynamic response compared with those of the ideal nominal system.
Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Technical Paper

Simulation Based Assessment of Plug-in Hybrid Electric Vehicle Behavior During Real-World 24-Hour Missions

2010-04-12
2010-01-0827
This paper proposes a simulation based methodology to assess plug-in hybrid vehicle (PHEV) behavior over 24-hour periods. Several representative 24-hour missions comprise naturalistic cycle data and information about vehicle resting time. The data were acquired during Filed Operational Tests (FOT) of a fleet of passenger vehicles carried out by the University of Michigan Transportation Research Institute (UMTRI) for safety research. Then, PHEV behavior is investigated using a simulation with two different charging scenarios: (1) Charging overnight; (2) Charging whenever possible. Charging/discharging patterns of the battery as well as trends of charge depleting (CD) and charge sustaining (CS) modes at each scenario were assessed. Series PHEV simulation is generated using Powertrain System Analysis Toolkit (PSAT) developed by Argonne National Laboratory (ANL) and in-house Matlab codes.
Technical Paper

Numerical Modeling and Simulation of the Vehicle Cooling System for a Heavy Duty Series Hybrid Electric Vehicle

2008-10-06
2008-01-2421
The cooling system of Series Hybrid Electric Vehicles (SHEVs) is more complicated than that of conventional vehicles due to additional components and various cooling requirements of different components. In this study, a numerical model of the cooling system for a SHEV is developed to investigate the thermal responses and power consumptions of the cooling system. The model is created for a virtual heavy duty tracked SHEV. The powertrain system of the vehicle is also modeled with Vehicle-Engine SIMulation (VESIM) previously developed by the Automotive Research Center at the University of Michigan. VESIM is used for the simulation of powertrain system behaviors under three severe driving conditions and during a realistic driving cycle. The output data from VESIM are fed into the cooling system simulation to provide the operating conditions of powertrain components.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

Plant Identification and Design of Optimal Clutch Engagement Controller

2006-10-31
2006-01-3539
Automated clutches for vehicle startup is being increasingly deployed in commercial trucks for benefits, which include driver comfort, gradient performance, improved clutch life, emissions and driveline vibration reduction potential. The process of designing the controller is divided into 2 parts. Firstly, the parameter estimation of previously developed driveline models is carried out. The procedure involves an off-line minimization technique based on measured and estimated speeds. Secondly, the nominal plant model is used to develop LQR based optimal control strategy, which takes into account the slip time, dissipated power and slip acceleration. Mathematical expression of the performance index is clearly developed. A variety of clutch lock up profiles can be incorporated by changing a single tuning parameter, thus providing the driver the ability to select a launch profile based on specific driving objectives.
X