Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Energy-Efficient Traction Induction Machine Control

2019-04-02
2019-01-0598
The article solves the problem of increasing the energy efficiency of the traction electric drive in the low load conditions. The set objective is achieved by analogy with internal combustion engines by decreasing the consumed energy using the amplitude control of the three-phase voltage of the induction machine. The basis of the amplitude control is laid by the constancy criterion of the overload capacity with respect to the electromagnetic torque, which provides a reliable reserve from a "breakdown" of the induction machine mode in a wide range of speeds and loads. The control system of the traction electric drive contains a reference model of electromechanical energy conversion represented by the generalized equations of the instantaneous balance of the active and reactive power and the mechanical load. The induction machine is controlled by two adaptive variables: the electromagnetic torque and the voltage amplitude.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Integrated Brake Squeal with Induced Thermal Stress Analysis

2017-06-05
2017-01-1900
Brake squeal is an instability issue with many parameters. This study attempts to assess the effect of thermal load on brake squeal behavior through finite element computation. The research can be divided into two parts. The first step is to analyze the thermal conditions of a brake assembly based on ANSYS Fluent. Modeling of transient temperature and thermal-structural analysis are then used in coupled thermal-mechanical analysis using complex eigenvalue methods in ANSYS Mechanical to determine the deformation and the stress established in both the disk and the pad. Thus, the influence of thermal load may be observed when using finite element methods for prediction of brake squeal propensity. A detailed finite element model of a commercial brake disc was developed and verified by experimental modal analysis and structure free-free modal analysis.
Technical Paper

Synchronous Motor with Silicon Steel Salient Poles Rotor and All Coils Placed on the Stator

2017-03-28
2017-01-1606
In this paper, we consider a new design of synchronous motor with salient poles rotor and all coils placed on the stator. This design, uses a laminated silicon steel rotor, which is not so expensive as a rotor with super strong permanent magnets. This design of machine eliminates copper rings on the rotor and brushes which is used in regular synchronous motors, and eliminates disadvantages involved with these arrangements. In an earlier publication, authors considered the opportunity realization of synchronous mode operation in the machine with salient pole rotor and DC stator excitation. Now, we consider the new synchronous mode operation with individual DC excitation of each the alternative current (AC) windings for realization the first, second and third phase synchronous machines. In theoretical basics of analyses and design of synchronous motors we pay more attention to the single-phase motor because it is the basis for design polyphase synchronous machines.
Technical Paper

The Multiobjective Optimal Design Problems and their Pareto Optimal Fronts for Li-Ion Battery Cells

2016-04-05
2016-01-1199
This paper begins with a baseline multi-objective optimization problem for the lithium-ion battery cell. Maximizing the energy per unit separator area and minimizing the mass per unit separator area are considered as the objectives when the thickness and the porosity of the positive electrode are chosen as design variables in the baseline problem. By employing a reaction zone model of a Graphite/Iron Phosphate Lithium-ion Cell and the Genetic Algorithm, it is shown the shape of the Pareto optimal front for the formulated optimization takes a convex form. The identified shape of the Pareto optimal front is expected to guide Design of Experiments (DOE) and product design. Compared with the conventional studies whose optimizations are based on a single objective of maximizing the specific energy, the proposed multi-objective optimization approach offers more flexibility to the product designers when trade-off between conflicting objectives is required.
Journal Article

Effect of Temperature Variation on Stresses in Adhesive Joints between Magnesium and Steel

2012-04-16
2012-01-0771
This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Simulating an Integrated Business Environment that Supports Systems Integration

2010-10-19
2010-01-2305
This paper describes the design and application of a business simulation to help train employees about the new business model and culture that for an automotive supplier company that designs connected vehicle and other advanced electronic products for the automotive industry. The simulation, called SIM-i-TRI, is a three to four day collaborative learning activity that simulates the executive, administrative, engineering, manufacturing, and marketing functions in three divisions of a manufacturer that supplies parts and systems to customers in industries similar to the automotive industry. It was originally designed to support the new employee orientation at the Tier 1 supplier and to provide the participants a safe environment to practice the lessons from the orientation. The simulation has been used several times a month in the US, England, and Germany for over four years.
Technical Paper

How the University of Michigan-Dearborn Prepares Engineering Graduates for Careers in Automotive Systems Engineering

2010-10-19
2010-01-2327
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

2008-04-14
2008-01-1446
Current die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower edges. For common automotive exterior sheet, this translates to a gap less than 0.06mm. Unfortunately, the tolerances required by such standards often exceed the capabilities of many trim dies. The objective of the research described in this paper is to study the mechanisms of burrs generation and their impact on AHSS formability in stretch flanging. Experimental results on influence of trimming conditions on the shape of the sheared surface will be combined with the results of stretching strips after trimming.
Technical Paper

Touch Feel and Appearance Characteristics of Automotive Door Armrest Materials

2007-04-16
2007-01-1217
This paper presents results of a five phase study conducted to evaluate touch feel and appearance of door armrest materials. Seven different production door armrests with different material characteristics such as softness, smoothness, compressibility, texture, etc. were evaluated. In the first phase, the subjects seated in a vehicle buck in their preferred seating position with the armrests adjusted at their preferred heights, provided ratings on a number of touch feel and appearance of the door armrest materials using 5-point semantic differential scales. In the second phase, the armrests were presented to each subject in all possible pairs and they were asked to select preferred armrest material in each pair.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

A Value Analysis Tool for Automotive Interior Door Trim Panel Materials and Process Selection

2007-04-16
2007-01-0453
This paper describes a computerized value analysis tool (VAT) developed to aid automotive interior designers, engineers and planners to achieve the high levels of perceived quality of materials used in automotive door trim panels. The model requires a number of inputs related to types of materials, their manufacturing processes and customer perceived quality ratings, costs and importance of materials, features located in different areas of the door trim panel, etc. It allows the user to conduct iterative evaluation of total cost, total weighted customer perceived quality ratings, and estimates of perceived value (perceived quality divided by cost) for different door trim areas as well as the entire door trim panel. The VAT, thus, allows value and cost management related to materials and processing choices for automotive interiors.
Technical Paper

Towards Development of a Methodology to Measure Perception of Quality of Interior Materials

2005-04-11
2005-01-0973
The automotive interior suppliers are challenged to develop materials, that not only perform functionally, but also provide the right combination sensory experience (e.g. visual appeal, tactile feeling) and brand differentiation at very competitive costs. Therefore, the objective of this research presented in this paper is to develop a methodology that can be used to measure customer perception of interior materials and to come up with a unique system for assessing value of different interior materials. The overall methodology involves the application of a number of psychophysical measurement methods (e.g. Semantic Differential Scaling) and statistical methods to assess: 1) overall customer perceived quality of materials, 2) elements (or attributes) of perception, and 3) value of materials from OEM's viewpoint in terms of the measurement of perception of quality divided by a measure of cost.
Technical Paper

Investigation of Active Steering/Wheel Torque Control at the Rollover Limit Maneuver

2004-05-04
2004-01-2097
It is well understood that driver's steering input strongly affects lateral vehicle dynamics and excessive steering command may result in unstable vehicle motion. In a certain driving condition, it is possible for a skilled driver to prevent vehicle rollover with better perceptive capability of judging conditions and responding faster with smooth compensatory actions. This paper investigates the possibility of using active steering and wheel torque control to assist drivers in avoiding vehicle rollovers in emergency situations. The effectiveness of steering control alone and combination of steering/wheel torque control in recovery from unstable vehicle roll condition was demonstrated through simulation of both low and high vehicle speeds.
Technical Paper

Independent Control of All-Wheel-Drive Torque Distribution

2004-05-04
2004-01-2052
The sophistication of all-wheel-drive technology is approaching the point where the drive torque to each wheel can be independently controlled. This potentially offers vehicle handling enhancements similar to those provided by Dynamic Stability Control, but without the inevitable reduction in vehicle acceleration. Independent control of all-wheel-drive torque distribution would therefore be especially beneficial under acceleration close to the limit of stability. A vehicle model of a typical sports sedan was developed in Simulink, with fully independent control of torque distribution. Box-Behnken experimental design was employed to determine which torque distribution parameters have the greatest impact on the vehicle course and acceleration. A proportional-integral control strategy was implemented, applying yaw rate feedback to vary the front-rear torque distribution, and lateral acceleration feedback to adjust the left-right distribution.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

2002-06-03
2002-01-1891
This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Technical Paper

Formability of Aluminum Tailor-Welded Blanks

2000-03-06
2000-01-0772
The use of tailor welded blanks (TWBs) in automotive applications is increasing due to the potential of weight and cost savings. These blanks are manufactured by joining two or more sheets of dissimilar gauge, properties, or both, to form a lighter blank of desired strength and stiffness. This allows an engineer to “tailor” the properties of the blank to meet the design requirements of a particular panel. TWBs are used in such places as door inner panels, lift gates, and floor pans. Earlier investigations of the use of TWBs targeted steel alloys, but the potential of further weight savings with aluminum TWBs is gaining interest in the automotive industry. Unlike steel TWBs, the welds in aluminum TWBs are not significantly stronger than the base material and are occasionally the fracture site. Additionally, the reduced formability of aluminum, as compared with drawing-quality steels, makes the application of aluminum TWBs more difficult than steel TWBs.
Technical Paper

Prediction and Experimental Validation of Path-Dependent Forming Limit Diagrams of VDIF Steel

1998-02-23
980079
Strains in most stamped parts are produced under non-proportional loading. Limit strains induced during forming are, therefore, path dependent. Experimental Forming Limit Diagrams (FLDs) are usually determined under proportional loading and are not applicable to most forming operations. Experimental results have shown that path dependent FLDs are different from those determined under proportional loading. A number of analytical methods have been used to predict FLDs under proportional loading. The authors have recently introduced a new method for predicting FLDs based on the theory of damage mechanics. The damage model was used successfully to predict proportional FLDs for VDIF steel and Al6111-T4. In this paper, the anisotropic damage model was used to predict non-proportional FLDs for VDIF steel. Experiments were conducted to validate model predictions by applying pre-stretch in plane strain followed by uniaxial and balanced biaxial tension.
X