Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Transient Stability Analysis of DC Solid State Power Controller (SSPC) for More Electric Aircraft

2018-10-30
2018-01-1927
The solid state power controller (SSPC) is one of the most important power electronic components of the aircraft electrical power distribution (EPS) systems. This paper presents an architecture of the DC SSPC and provides the mitigation techniques for transient voltage overshoot during its turn-off. The high source side inductance carries breaking current (9xnominal current) just before turnoff and induces large voltage transient across the semiconductor devices. Therefore, the stored inductive energy needs to be dissipated in order to prevent semiconductor switches from over-voltage/thermal breakdown. Three different transient voltage suppression (TVS) devices to reduce voltage stress across switches are included in the paper for detail study. The comprehensive comparison of the TVS devices is presented. In addition, the thermal impact of the TVS devices on the semiconductor switches is also analyzed.
Technical Paper

Modulation Limit Based Control Strategy for More Electric Aircraft Generator System

2018-10-30
2018-01-1937
Vector based control strategies have been extensively employed for drive systems, and in recent times to the More Electric Aircraft (MEA) generator based systems. The control schemes should maintain the bus voltage and adhere to the generator system voltage and current limits throughout a wide speed range. Typically, the current limit is prioritised first due to ease of implementation and simple control structure. As a result, the voltage limit can be exceeded due to change in operating conditions or disturbance factors. In flux weakening regions, this may affect the controllability of the power converter and lead to generator system instability. In this paper, an alternative control strategy has been investigated to address this drawback. The proposed control scheme refers to the modulation index limit which is the ratio between the power converter input and output voltages as the voltage limit.
Technical Paper

Potential Improvements in Turbofan’s Performance by Electric Power Transfer

2018-10-30
2018-01-1962
Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena. However, by emerging the More Electric Aircraft (MEA) the engine is equipped with electrical machines on both high and Low Pressure (LP) spools which enables transfer of power electrically from one spool to another and hence provides the opportunity to operate engine core components closer to their optimum design point at off-design conditions. At lower power setting of the engine, HPC speed can be increased by taking power from LP shaft and feeding it to HP shaft which can lead to the removal of the bleeding system which in turn reduces weight and fuel consumption and help to overcome engine instability issues. Fuel consumption can be decreased by decreasing inconsistent thrust with the aircraft mission for flight and ground idle settings.
X