Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Exhaust System Heat Transfer and Catalytic Converter Performance

1999-03-01
1999-01-0453
Three-way catalytic converters used on spark ignition engines have performance and durability characteristics which are effected by the thermal environment in which these operate. The design of the exhaust system and the location of the catalyst unit are important in controlling the range of thermal states the catalyst is exposed to. A model of system thermal behaviour has been developed to support studies of these. The exhaust system is modelled as connected pipe and junction elements with lumped thermal capacities. Heat transfer correlations for quasi-steady and transient conditions have been investigated. The catalytic converter is treated as elemental slices in series. Exothermic heat release and heat exchange between the monolith, mat, and shell are described in the model. A similar description is applied to lean NOx trap units.
Technical Paper

Correlation of Engine Heat Transfer for Heat Rejection and Warm-Up Modelling

1997-05-19
971851
A correlation for total gas-side heat transfer rate has been derived from the analysis of engine data for measured heat rejection rate, frictional dissipation, and published data on exhaust port heat transfer. The correlation is related to the form developed by Taylor and Toong, and the analysis draws on this. However, cylinder and exhaust port contributions are separated. Two empirical constants are fixed to best match predicted to measured results for heat rejection to coolant and oil cooler under steady-state conditions, and also for exhaust port heat transfer rates. The separated contributions also defined a correlation for exhaust port heat transfer rate. The description of gas-side heat transfer is suited to needs for the analysis of global thermal behaviour of engines.
Technical Paper

Factors Influencing Drive Cycle Emissions and Fuel Consumption

1997-05-01
971603
A method of predicting HC, CO and NOx emissions and fuel-used over drive cycles has been developed. This has been applied to FTP-75 and ECE+EUDC drive cycles amended to include cold-start and warm-up. The method requires only fully-warm steady state indicated performance data to be available for the engine. This is used in conjunction with a model of engine thermal behaviour and friction characteristics, and vehicle/drive cycle specifications enabling engine brake load/speed variations to be defined. A time marching prediction of engine-out emissions and fuel consumption is carried out taking into account factors which include high engine friction and poor mixture preparation after cold-start. Comparisons with experimental data indicate that fuel consumption and emissions can be predicted to quantitative accuracy. The method has been applied to compare and contrast the importance of various operating regimes during the two cycles.
Technical Paper

Effect of Coolant Mixture Composition on Engine Heat Rejection Rate

1996-02-01
960275
The rate of heat rejection to the coolant system of an internal combustion engine depends upon coolant composition, among other factors, because this influences the coolant side heat transfer coefficient. The correlation developed by Taylor and Toong for heat transfer rate has been modified to account for this effect. The modification retains the gas-to-coolant passage thermal resistance implicit in the original correlation. The modified correlation gives predictions in agreement with experimental data. Compared to 100% water, mixtures of 50% ethylene glycol/50% water lower heat rejection rates by typically 5% and up to 25% in the extreme. This depends upon local conditions in the coolant circuit, which can give rise to different heat transfer regimes. Application of the modified correlation is outlined and illustrated.
Technical Paper

Transient Air/Fuel Ratio Control of an S.I. Engine Using Neural Networks

1996-02-01
960326
Engine Electronic Control (EEC) systems on spark ignition engines enable a high degree of performance optimisation to be achieved through strategy and calibration details in software, but development times and costs can be high. The range of functions performed by EEC systems, and the level of performance demanded, are increasing and new methods of development are required. In the paper, the use of neural networks in the development and implementation of open-loop control of air/fuel ratio during engine transient operating conditions is described. The investigation has addressed the definition of suitable networks, the procedure and data required to train these, and assessment of real-time performance of the implemented system. The potential benefits of the approach include reduced calibration effort and simplification of the control strategy.
Technical Paper

Heat Transfer to the Combustion Chamber Walls in Spark Ignition Engines

1995-02-01
950686
The cycle-by-cycle variation of heat transferred per cycle (q) to the combustion chamber surfaces of spark ignition engines has been investigated for quasi-steady and transient conditions produced by throttle movements. The heat transfer calculation is by integration of the instantaneous value over the cycle, using the Woschni correlation for the heat transfer coefficient. By examination of the results obtained, a relatively simple correlation has been identified: This holds both for quasi-steady and transient conditions and is on a per cylinder basis. The analysis has been extended to define a heat flux distribution over the surface of the chamber. This is given by: where F(x/L) is a polynomial function, q″ is the heat transfer per cycle per unit area to head and piston crown surfaces and gives the distribution along the liner
Technical Paper

The Determination of Heat Transfer from the Combustion Chambers of SI Engines

1993-04-01
931131
Two methods of determining the rate of heat transfer from the combustion chamber have been investigated. A First Law analysis is shown to be ill-conditioned because of sensitivity to heat release and gas property calculations. An alternative approach equates cycle-averaged chamber heat transfer to the difference between heat rejected to the coolant and gas heat transfer to the exhaust port. This has been examined as a basis for calibrating the Woschni correlation.
Technical Paper

A Model for the Investigation of Temperature, Heat Flow and Friction Characteristics During Engine Warm-Up

1993-04-01
931153
A computational model has been developed to support investigations of temperature, heat flow and friction characteristics, particularly in connection with warm-up behaviour. A lumped capacity model of the engine block and head, empirically derived correlations for local heat transfer and friction losses, and oil and coolant circuit descriptions form the core of the model. Validation of the model and illustrative results are reported.
X