Refine Your Search

Topic

Search Results

Technical Paper

Development of an Ultra-Low Carbon Flex Dual-Fuel Ammonia Engine for Heavy-Duty Applications

2024-04-09
2024-01-2368
The work examined the practicality of converting a modern production 6 cylinder 7.7 litre heavy-duty diesel engine for flex dual-fuel operation with ammonia as the main fuel. A small amount of diesel fuel (pilot) was used as an ignition source. Ammonia was injected into the intake ports during the intake stroke, while the original direct fuel injection equipment was retained and used for pilot diesel injection. A bespoke engine control unit was used to control the injection of both fuels and all other engine parameters. The aim was to provide a cost-effective retrofitting technology for existing heavy-duty engines, to enable eco-friendly operation with minimal carbon emissions. The tests were carried out at a baseline speed of 600 rpm for the load range of the engine (10-90%), with minimum pilot diesel quantity and as high as 90% substitution ratio of ammonia for diesel fuel.
Technical Paper

Experimental Comparison of Spark and Jet Ignition Engine Operation with Ammonia/Hydrogen Co-Fuelling

2024-04-09
2024-01-2099
Ammonia (NH3) is emerging as a potential fuel for longer range decarbonised heavy transport, predominantly due to favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting end use to applications where robust health and safety protocols can always be upheld. In the currently reported work, a spark ignited thermodynamic single cylinder research engine was upgraded to include gaseous ammonia and hydrogen port injection fueling, with the aim of understanding maximum viable ammonia substitution ratios across the speed-load operating map. The work was conducted under stoichiometric conditions with the spark timing re-optimised for maximum brake torque at all stable logged sites. The experiments included industry standard measurements of combustion, performance and engine-out emissions.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Technical Paper

Measurement of Sub-23 nm Particulate Emissions from GDI Engines: A Comparison of Processing Methods

2021-04-06
2021-01-0626
Engine research has increasingly focused on emission of sub 23 nm particulates in recent years. Likewise, current legislative efforts are being made for particulate number (PN) emission limits to include this previously omitted size range. In Europe, PN measurement equipment and procedures for regulatory purposes are defined by the particle measurement programme (PMP). Latest regulation drafts for sub 23 nm measurements specify counting efficiencies with a 65% cut-off size at 10 nm (d65) and a minimum of 90% above 15 nm (d90). Even though alternative instruments, such as differential mobility spectrometers (DMS), are widely used in laboratory environments, the interpretation of their sub 23 nm measurements has not yet been widely discussed. For this study, particulate emissions of a 1.0L gasoline direct injection (GDI) engine have been measured with a DMS system for low to medium speeds with two load steps.
Technical Paper

Investigations of Diesel Injector Deposits Characterization and Testing

2020-09-15
2020-01-2094
Over the last decade, there has been an impetus in the automobile industry to develop new diesel injector systems, driven by a desire to reduce fuel consumption and proscribed by the requirement to fulfil legislation emissions. The modern common-rail diesel injector system has been developed by the industry to fulfil these aspirations, designed with ever-higher tolerances and pressures, which have led to concomitant increases in fuel temperatures after compression with reports of fuel temperatures of ~150°C at 1500-2500 bar. This engineering solution in combination with the introduction of Ultra Low Sulphur diesel fuel (ULSD) has been found to be highly sensitive to deposit formation both external injector deposits (EDID) and internal (IDID). The deposits have caused concerns for customers with poor spray patterns misfiring injector malfunction and failure, producing increased fuel consumption and emissions.
Journal Article

Internal Diesel Injector Deposit Chemical Speciation and Quantification Using 3D OrbiSIMS and XPS Depth Profiling

2020-09-15
2020-01-2098
The impact of internal diesel injector deposits (IDIDs) on engine performance, efficiency and emissions remains a major concern in the automotive industry. This has been compounded in recent years by fuel injection equipment developments and changes to diesel fuel towards ultra-low sulfur diesel (ULSD) and biodiesel as well as the introduction of new fuels such as hydrotreated vegetable oil (HVO). Prevention and mitigation of such deposit formation requires an understanding of the formation process, which demands a chemical explanation. The chemistry of these deposits therefore remains a key research interest to the industry using the latest analytical methodologies to inform and build further on previous investigations.
Technical Paper

Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine?

2019-04-02
2019-01-0301
Formation of soot is a known phenomenon for diesel engines, however, only recently emerged for gasoline engines with the introduction of direct injection systems. Soot-in-oil samples from a three-cylinder turbocharged gasoline direct injection (GDI) engine have been analysed. The samples were collected from the oil sump after periods of use in predominantly urban driving conditions with start-stop mode activated. Thermogravimetric analysis (TGA) was performed to measure the soot content in the drained oils. Soot deposition rates were similar to previously reported rates for diesel engines, i.e. 1 wt% per 15,000 km, thus indicating a similar importance. Morphology was assessed by transmission electron microscopy (TEM). Images showed fractal agglomerates comprising multiple primary particles with characteristic core-shell nanostructure. Furthermore, large amorphous structures were observed. Primary particle sizes ranged from 12 to 55 nm, with a mean diameter of 30 nm and mode at 31 nm.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

An Enhanced Secondary Control Approach for Voltage Restoration in the DC Distribution System

2016-09-20
2016-01-1985
The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
Technical Paper

Application of Adaptive Local Mesh Refinement (ALMR) Approach for the Modeling of Reacting Biodiesel Fuel Spray using OpenFOAM

2014-10-13
2014-01-2565
Modeling the combustion process of a diesel-biodiesel fuel spray in a 3-dimensional (3D) computational fluid dynamics (CFD) domain remains challenging and time-consuming despite the recent advancement in computing technologies. Accurate representation of the in-cylinder processes is essential for CFD studies to provide invaluable insights into these events, which are typically limited when using conventional experimental measurement techniques. This is especially true for emerging new fuels such as biodiesels since fundamental understanding of these fuels under combusting environment is still largely unknown. The reported work here is dedicated to evaluating the Adaptive Local Mesh Refinement (ALMR) approach in OpenFOAM® for improved simulation of reacting biodiesel fuel spray. An in-house model for thermo-physical and transport properties is integrated to the code, along with a chemical mechanism comprising 113 species and 399 reactions.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Technical Paper

Design and Modeling of a 45kW, Switched Reluctance Starter-Generator for a Regional Jet Application

2014-09-16
2014-01-2158
A 45kW, switched reluctance type, starter-generator, having a 1:4 constant power speed range has been designed as a possible candidate for a regional jet application. In the first section of this paper, a review of the major starter-generator topologies considered for the aerospace application is provided, highlighting the advantages of choosing the Switched reluctance topology for such a safety critical application. Following this, the required torque speed characteristic of the machine, along with the imposed physical constraints, in terms of cooling and outer dimensions, are also detailed. Section III provides a description of the Electromagnetic design, and challenges encountered in meeting both the low speed, peak torque node, at 8000rpm, and the high speed, high power node, at 32000rpm. The induced mechanical stresses in the rotor at such high speeds have also been evaluated and used as a material selection criterion for such a design as presented in section III.
Journal Article

A Novel Diagnostics Tool for Measuring Soot Agglomerates Size Distribution in Used Automotive Lubricant Oils

2014-04-01
2014-01-1479
The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates.
Journal Article

A Novel Technique for Investigating the Characteristics and History of Deposits Formed Within High Pressure Fuel Injection Equipment

2012-09-10
2012-01-1685
The recent developments in diesel fuel injection equipment coupled with the moves in the US to using ULSD and biodiesel blends has seen an increase in the number of reports from both engine manufacturers and fleet operators regarding fuel system deposit formation issues. These deposits not only form on and within the fuel injectors but they also form elsewhere in the fuel system, due to fuel recirculation. These will eventually accumulate in the fuel filters. Historically, diesel fuel system deposits have been attributed to contamination of the fuel or the degradation of the fuel with age. Such age related degradation has been attributed to oxidation of the fuel via well documented pathways, although the initiation of this process is still poorly understood. Papers at recent SAE meetings in Florence, San Antonio, Rio de Janeiro, San Diego and Kyoto have addressed many of these causes.
Journal Article

The Influence of Injection Strategy and Glow Plug Temperature on Cycle by Cycle Stability Under Cold Idling Conditions for a Low Compression Ratio, HPCR Diesel Engine

2012-04-16
2012-01-1071
Experimental studies have been undertaken on a single-cylinder HPCR diesel engine with a compression ratio of 15.5:1 to explore the effect of fuel injection strategy on cycle by cycle stability. The influence of the number, separation and quantity of pilot injections on the coefficient of variation of IMEP has been investigated at -20°C, 1000 rev/min, post-start idling conditions. Injection strategy and glow plug temperature trade-off has also been investigated at a range of soak temperatures. Up to four pilot injections have been used. For timing of the main injection near to the optimum, CoVIMEP values of 10% or better can be achieved. Closer spacing of injections improved stability and extended the range of timings to meet target stability. The best combinations of pilot number and pilot quantity varied with total fuel delivered.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Diesel Injector Deposits - An Issue That Has Evolved with Engine Technology

2011-08-30
2011-01-1923
Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Technical Paper

Constraints on Fuel Injection and EGR Strategies for Diesel PCCI-Type Combustion

2008-04-14
2008-01-1327
An experimental study has been carried out to explore what limits fuel injection and EGR strategies when trying to run a PCCI-type mode of combustion on an engine with current generation hardware. The engine is a turbocharged V6 DI diesel with (1600 bar) HPCR fuel injection equipment and a cooled external EGR system. The variables examined have been the split and timings of fuel injections and the level of EGR; the responses investigated have been ignition delay, heat release, combustion noise, engine-out emissions and brake specific fuel consumption. Although PCCI-type combustion strategies can be effective in reducing NOx and soot emissions, it proved difficult to achieve this without either a high noise or a fuel economy penalty.
X