Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

On the Prediction of Spray A End of Injection Phenomenon Using Conditional Source-Term Estimation

2020-04-14
2020-01-0779
In this study, the role of turbulence-chemistry interaction in diesel spray auto-ignition, flame stabilization and end of injection phenomena is investigated under engine relevant “Spray A” conditions. A recently developed diesel spray combustion modeling approach, Conditional Source-term Estimation (CSE-FGM), is coupled with Reynolds-averaged Navier-Stokes simulation (RANS) framework to study the details of spray combustion. The detailed chemistry mechanism is included through the Flamelet Generated Manifold (FGM) method. Both unsteady and steady flamelet solutions are included in the manifold to account for the auto-ignition process and the subsequent flame propagation in a diesel spray. Conditionally averaged chemical source terms are closed by the conditional scalars obtained in the CSE routine. Both non-reacting and reacting spray jets are computed over a wide range of Engine Combustion Network (ECN) diesel. “Spray A” conditions.
Technical Paper

A Study on Kinetic Mechanisms of Diesel Fuel Surrogate n-Dodecane for the Simulation of Combustion Recession

2019-04-02
2019-01-0202
Combustion recession, an end of injection (EOI) diesel spray phenomenon, has been found to be a robust correlation parameter for UHC in diesel LTC strategies. Previous studies have shown that the likelihood of capturing combustion recession in numerical simulations is highly dependent on the details of the low-temperature chemistry reaction mechanisms employed. This study aims to further the understanding of the effects of different chemical mechanisms in the prediction of a reactive diesel spray and its EOI process: combustion recession. Studies were performed under the Engine Combustion Network’s (ECN) “Spray A” conditions using the Reynolds-Averaged Navier-Stokes simulation (RANS) and the Flamelet Generated Manifold (FGM) combustion model with four different chemical mechanisms for n-dodecane that are commonly used in the engine simulation communities - including recently developed reduced chemistry mechanisms.
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
X