Refine Your Search

Topic

Author

Search Results

Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Technical Paper

A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C

2019-06-10
2019-01-1963
Ingestion of high altitude atmospheric ice particles can be hazardous to gas turbine engines in flight. Ice accretion may occur in the core compression system, leading to blockage of the core gas path, blade damage and/or flameout. Numerous engine powerloss events since 1990 have been attributed to this mechanism. An expansion in engine certification requirements to incorporate ice crystal conditions has spurred efforts to develop analytical models for phenomenon, as a method of demonstrating safe operation. A necessary component of a complete analytical icing model is a thermodynamic accretion model. Continuity and energy balances are performed using the local flow conditions and the mass fluxes of ice and water that are incident on a surface to predict the accretion growth rate.
Technical Paper

Microwave Technique for Liquid Water Detection in Icing Applications

2019-06-10
2019-01-1930
The partial melting of ingested ice crystals can lead to ice accretion in aircraft compressors, but accurately measuring the relatively small fraction of liquid water content in such flows is challenging. Probe-based methods for detecting liquid water content are not suitable for deployment within turbofan engines, and thus alternatives are sought. Recent research has described approaches based on passive microwave sensing. We present here an approach based on active microwave transmission and reflection, employing a vector network analyzer. Utilization of both transmission and reflection provides additional data over and above emission or transmission only, and permits a more controllable environment than passive sensing approaches. The paper specifically addresses the question of whether such an approach is viable within the context of representative icing wind tunnel and engine flow conditions.
Technical Paper

ICICLE: A Model for Glaciated & Mixed Phase Icing for Application to Aircraft Engines

2019-06-10
2019-01-1969
High altitude ice crystals can pose a threat to aircraft engine compression and combustion systems. Cases of engine damage, surge and rollback have been recorded in recent years, believed due to ice crystals partially melting and accreting on static surfaces (stators, endwalls and ducting). The increased awareness and understanding of this phenomenon has resulted in the extension of icing certification requirements to include glaciated and mixed phase conditions. Developing semi-empirical models is a cost effective way of enabling certification, and providing simple design rules for next generation engines. A comprehensive ice crystal icing model is presented in this paper, the Ice Crystal Icing ComputationaL Environment (ICICLE). It is modular in design, comprising a baseline code consisting of an axisymmetric or 2D planar flowfield solution, Lagrangian particle tracking, air-particle heat transfer and phase change, and surface interactions (bouncing, fragmentation, sticking).
Technical Paper

Experimental Study and Analysis of Ice Crystal Accretion on a Gas Turbine Compressor Stator Vane

2019-06-10
2019-01-1927
A significant number of historical engine powerloss events have recently been attributed to ingestion of high altitude ice crystals, prompting regulators to expand engine certification envelopes to incorporate ‘ice crystal icing’ conditions. There has been a resulting effort by OEMs and academia to develop analytical and semi-empirical models for the phenomenon, partly through use of rig testing. The current study presents results and analysis of experiments conducted in the National Research Council’s Research Altitude Test Facility (RATFac). The experiments used a simplified compressor stator vane test article, designed to produce data to build semi-empirical models and validate an existing ice crystal icing code. Accretion growth rates, extracted from backlit shadowgraphy, are presented as a function of test condition, and the algorithm of a new image processing technique using Canny filtering is discussed.
Technical Paper

Two-Way Flow Coupling in Ice Crystal Icing Simulation

2019-06-10
2019-01-1966
Numerous turbofan power-loss events have occurred in high altitude locations in the presence of ice crystals. It is theorized that ice crystals enter the engine core, partially melt in the compressor and then accrete onto stator blade surfaces. This may lead to engine rollback, or shed induced blade damage, surge and/or flameout. The first generation of ice crystal icing predictive models use a single flow field where there is no accretion to calculate particle trajectories and accretion growth rates. Recent work completed at the University of Oxford has created an algorithm to automatically detect the edge of accretion from experimental video data. Using these accretion profiles, numerical simulations were carried out at discrete points in time using a manual meshing process.
Technical Paper

Novel Metrics for Validation of PIV and CFD in IC Engines

2019-04-02
2019-01-0716
In-cylinder flow motion has a significant effect on mixture preparation and combustion. Therefore, it is vital that CFD engine simulations are capable of accurately predicting the in-cylinder velocity fields. High-speed planar Particle Image Velocimetry (PIV) experiments have been performed on a single-cylinder GDI optical engine in order to validate CFD simulations for a range of engine conditions. Novel metrics have been developed to quantify the differences between experimental and simulated velocity fields in both alignment and magnitude. The Weighted Relevance Index (WRI) is a variation of the standard Relevance Index that accounts for the local velocity magnitudes to provide a robust comparison of the alignment between two vector fields. Similarly, the Weighted Magnitude Index (WMI) quantifies the differences in the local magnitudes of the two velocity fields.
Technical Paper

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Thermal Analysis of Steel and Aluminium Pistons for an HSDI Diesel Engine

2019-04-02
2019-01-0546
Chromium-molybdenum alloy steel pistons, which have been used in commercial vehicle applications for some time, have more recently been proposed as a means of improving thermal efficiency in light-duty applications. This work reports a comparison of the effects of geometrically similar aluminium and steel pistons on the combustion characteristics and energy flows on a single cylinder high-speed direct injection diesel research engine tested at two speed / load conditions (1500 rpm / 6.9 bar nIMEP and 2000 rpm/25.8 bar nIMEP) both with and without EGR. The results indicate that changing to an alloy steel piston can provide a significant benefit in brake thermal efficiency at part-load and a reduced (but non-negligible) benefit at the high-load condition and also a reduction in fuel consumption. These benefits were attributed primarily to a reduction in friction losses.
Technical Paper

Fast NGC: A New On-Line Technique for Fuel Flow Measurement

2019-01-15
2019-01-0062
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modelling. Currently direct measurements of fuel flow to individual cylinders of an engine are not possible on-engine or in real-time due to a lack of available appropriate measurement techniques. The objective of this work was to undertake real-time Coriolis fuel flow measurement using GDI injectors on a rig observing fuel mass flow rate within individual fuel injections. This paper evaluates the potential of this technology - combining Coriolis Flow Meters (CFMs) with Prism signal processing together known as Fast Next Generation Coriolis (Fast NGC), and serves as a basis for future transitions on-engine applications. A rig-based feasibility study has been undertaken injecting gasoline through a GDI injector at 150 bar in both single shot mode and at a simulated engine speeds of 1788 and 2978 rpm. The results show that these injections can, in principle, be observed.
Technical Paper

Effect of Thermocouple Size on the Measurement of Exhaust Gas Temperature in Internal Combustion Engines

2018-09-10
2018-01-1765
Accurate measurement of exhaust gas temperature in internal combustion engines is essential for a wide variety of monitoring and design purposes. Typically these measurements are made with thermocouples, which may vary in size from 0.05 mm (for fast response applications) to a few millimetres. In this work, the exhaust of a single cylinder diesel engine has been instrumented both with a fast-response probe (comprising of a 50.8 μm, 127 μm and a 254 μm thermocouple) and a standard 3 mm sheathed thermocouple in order to assess the performance of these sensors at two speed/load conditions. The experimental results show that the measured time-average exhaust temperature is dependent on the sensor size, with the smaller thermocouples indicating a lower average temperature for both speed/load conditions. Subject to operating conditions, measurement discrepancies of up to ~80 K have been observed between the different thermocouples used.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Technical Paper

Comparison of Transient Diesel Spray Break-Up between Two Computational Fluid Dynamics Codes

2018-04-03
2018-01-0307
Accurate modeling of the initial transient period of spray development is critical within diesel engines, as it impacts on the amount of vapor penetration and hence the combustion characteristics of the spray. In addition, in multiple injection schemes shorter injections will be mostly, if not totally, within the initial transient period. This paper investigates how two different commercially available Computational Fluid Dynamics (CFD) codes (hereafter noted as Code 1 and Code 2) simulate transient diesel spray atomization, in a non-combusting environment. The case considered for comparison is a single-hole injection of n-dodecane representing the Engine Combustion Network’s ‘Spray A’ condition. It was identified that the different spray break-up models used by the codes (Reitz-Diwakar for Code 1, Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) for Code 2) had a significant impact on the transient liquid penetration.
Technical Paper

Assessing the Sensitivity of Hybrid RANS-LES Simulations to Mesh Resolution, Numerical Schemes and Turbulence Modelling within an Industrial CFD Process

2018-04-03
2018-01-0709
A wide-ranging investigation into the sensitivity of the hybrid RANS-LES based OpenFOAM CFD process at Audi was undertaken. For a range of cars (A1, TT, Q3 & A4) the influence of the computational grid resolution, turbulence model formulation and spatial & temporal discretization is assessed. It is shown that SnappyHexMesh, the Cartesian-prismatic built-in OpenFOAM mesher is unable to generate low y+ grids of sufficient quality for the production Audi car geometries. For high y+ grids there was not a consistent trend of additional refinement leading to improved correlation between CFD and experimental data. Similar conclusions were found for the turbulence models and numerical schemes, where consistent improvements over the baseline setup for all aerodynamic force coefficients were in general not possible. The A1 vehicle exhibited the greatest sensitivity to methodology changes, with the TT showing the least sensitivity.
Technical Paper

The Oxford Cold Driven Shock Tube (CDST) for Fuel Spray and Chemical Kinetics Research

2018-04-03
2018-01-0222
A new reflected shock tube facility, the Cold Driven Shock Tube (CDST), has been designed, built and commissioned at the University of Oxford for investigating IC engine fuel spray physics and chemistry. Fuel spray and chemical kinetics research requires its test gas to be at engine representative pressures and temperatures. A reflected shock tube generates these extreme conditions in the test gas for short durations (order milliseconds) by transiently compressing it through a reflected shock process. The CDST has been designed for a nominal test condition of 6 MPa, 900 K slug of air (300 mm long) for a steady test duration of 3 ms. The facility is capable of studying reacting mixtures at higher pressures (up to 150 bar) than other current facilities, whilst still having comparable size (100 mm diameter) and optical access to interrogate the fuel spray with high speed imaging and laser diagnostics.
Journal Article

A New Method for Measuring Fuel Flow in an Individual Injection in Real Time

2018-04-03
2018-01-0285
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modeling. At the moment, such measurements are not possible on engine or in real time. In this article, a new method using Coriolis flow meters (CFMs) and a new, patented, signal processing technique, known as the Prism, are introduced. CFMs are extensively used for flow measurement both in the automotive industry and further afield and, when coupled with the Prism, have the potential to make these challenging high-speed measurements. A rig-based feasibility study was conducted injecting very small quantities of diesel (3 mg) at pressures of up to 1000 bar at simulated engine speeds of up to 4000 rpm. The results show that these small quantities can in principle be measured. The results also reveal a previously unknown behavior of CFMs when measuring very low flow rates at high speed.
Journal Article

In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF

2017-09-04
2017-24-0045
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
Technical Paper

Optical Techniques that can be Applied to Investigate GDI Engine Combustion

2017-09-04
2017-24-0046
The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine mixture preparation and combustion can be obtained from optical access engines. Such data is also crucial for validating models that predict flows, sprays and air fuel ratio distributions. The purpose of this paper is to review a number of optical techniques; the interpretation of the results is engine specific so will not be covered here. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions.
Technical Paper

Studying the Effect of the Flame Passage on the Convective Heat Transfer in a S.I. Engine

2017-03-28
2017-01-0515
Engine optimization requires a good understanding of the in-cylinder heat transfer since it affects the power output, engine efficiency and emissions of the engine. However little is known about the convective heat transfer inside the combustion chamber due to its complexity. To aid the understanding of the heat transfer phenomena in a Spark Ignition (SI) engine, accurate measurements of the local instantaneous heat flux are wanted. An improved understanding will lead to better heat transfer modelling, which will improve the accuracy of current simulation software. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux within a Cooperative Fuel Research (CFR) engine. A two-zone temperature model is linked with the heat flux data. This allows the distinction between the convection coefficient in the unburned and burned zone.
Technical Paper

PICASSOS – Practical Applications of Automated Formal Methods to Safety Related Automotive Systems

2017-03-28
2017-01-0063
PICASSOS was a UK government funded programme to improve the ability of automotive supply chains to develop complex software-intensive systems with high safety assurance and at an acceptable cost. This was executed by a consortium of three universities and five companies including an automotive OEM and suppliers. Three major elements of the PICASSOS project were: use of automated model based verification technology utilising formal methods; application of this technology in the context of ISO 26262; and evaluation to measure the impact of this approach to inform key management decisions on the costs, benefits and risks of applying this technology on live projects. The project spanned system level design and software development. This was achieved by using a unified model based process incorporating SysML at the system level and using Simulink and Stateflow auto-coded into C at the software level.
X