Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Journal Article

A New Method for Measuring Fuel Flow in an Individual Injection in Real Time

Knowledge of fuel mass injected in an individual cycle is important for engine performance and modeling. At the moment, such measurements are not possible on engine or in real time. In this article, a new method using Coriolis flow meters (CFMs) and a new, patented, signal processing technique, known as the Prism, are introduced. CFMs are extensively used for flow measurement both in the automotive industry and further afield and, when coupled with the Prism, have the potential to make these challenging high-speed measurements. A rig-based feasibility study was conducted injecting very small quantities of diesel (3 mg) at pressures of up to 1000 bar at simulated engine speeds of up to 4000 rpm. The results show that these small quantities can in principle be measured. The results also reveal a previously unknown behavior of CFMs when measuring very low flow rates at high speed.
Journal Article

In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF

In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
Technical Paper

Dynamic Particulate Measurements from a DISI Vehicle: A Comparison of DMS500, ELPI, CPC and PASS

A Cambustion Differential Mobility Spectrometer (DMS500), Dekati Electrical Low Pressure Impactor (ELPI), TSI Condensation Particle Counter (CPC) and AVL Photo-Acoustic Soot Sensor (PASS) were compared for measurements of emitted Particulate Matter (PM) from a Direct Injection Spark Ignition (DISI) vehicle on the New European Drive Cycle (NEDC) and at steady speed operating points. The exhaust was diluted in a Constant Volume Sampler (CVS) before being measured. Transient size spectral data from the DMS500 and ELPI is presented. PM Number rate and total PM number emissions are presented for the DMS500, ELPI and CPC. The DMS500 and ELPI data are post-processed for PM mass, and presented with data from the PASS. The instrument responses were correlated against each other. Qualitative agreement was generally found between all instruments. The agreement was closer for PM mass measurements than for measurements of PM number.
Technical Paper

Combustion Imaging and Analysis in a Gasoline Direct Injection Engine

A single cylinder Direct Injection Spark Ignition (DISI) engine with optical access has been used for combustion studies with both early injection and late injection for stratified charge operation. Cylinder pressure records have been used for combustion analysis that has been synchronised with the imaging. A high speed cine camera has been used for imaging combustion within a cycle, while a CCD camera has been used for imaging at fixed crank angles, so as to obtain information on cycle-by-cycle variations. The CCD images have also been analysed to give information on the quantity of soot present during combustion. Tests have been conducted with a reference unleaded gasoline (ULG), and pure fuel components: iso-octane (a representative alkane), and toluene (a representative aromatic). The results show diffusion-controlled combustion occurring in so-called homogeneous combustion with early injection.
Technical Paper

Ignition System Measurement Techniques and Correlations for Breakdown and Arc Voltages and Currents

The first part of the paper is a brief review of the techniques needed for measuring the voltage and current during the ignition process. These techniques have been used in test rigs and an engine to gain insights into the breakdown and subsequent discharge development. New correlations are presented for breakdown voltage as functions of spark plug gap, gas composition, temperature and pressure. The discharge voltage is affected by the flow, so an elevated pressure flow rig was used to look at the effect of flow and pressure on the discharge voltage history, with different stored energies in the ignition coil. This study led to a model for the discharge voltage history, from which it was possible to deduce the flow velocity through the spark plug gap. Finally, these techniques were applied to a single cylinder, 4-valve, pent-roof combustion chamber SI engine, for determining the cycle-by-cycle variations in velocity through the spark plug at the time of ignition.