Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Correction of Beam Steering for Optical Measurements in Turbulent Reactive Flows

2021-04-06
2021-01-0428
The application of optical diagnostics in turbulent reactive flows often suffers from the beam steering (BS) effects, resulting in degraded image quality and/or measurement accuracy. This work investigated a method to correct the BS effects to improve the accuracy of optical diagnostics, with particle imagine velocimetry (PIV) measurements on turbulent reactive flames as an example. The proposed method used a guiding laser to correct BS. Demonstration in laboratory turbulent flames showed promising results where the accuracy of PIV measurement was significantly enhanced. Applicability to more complicated and practical situations are discussed.
Technical Paper

Geometrical Personalization of Pedestrian Finite Element Models Using Morphing Increases the Biofidelity of Their Impact Kinematics

2016-04-05
2016-01-1506
Pedestrian finite element models (PFEM) are used to investigate and predict the injury outcomes from vehicle-pedestrian impact. As postmortem human surrogates (PMHS) differ in anthropometry across subjects, it is believed that the biofidelity of PFEM cannot be properly evaluated by comparing a generic anthropometry model against the specific PMHS test data. Global geometric personalization can scale the PFEM geometry to match the height and weight of a specific PMHS, while local geometric personalization via morphing can modify the PFEM geometry to match specific PMHS anatomy. The goal of the current study was to evaluate the benefit of morphed PFEM compared to globally-scaled and generic PFEM by comparing the kinematics against PMHS test results. The AM50 THUMS PFEM (v4.01) was used as a baseline for anthropometry, and personalized PFEM were created to the anthropometric specifications of two obese PMHS used in a previous pedestrian impact study using a mid-size sedan.
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

2016-04-05
2016-01-1514
Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Journal Article

Occupant Kinematics and Injury Response in Steer Maneuver-Induced Furrow Tripped Rollover Testing

2015-04-14
2015-01-1478
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
Journal Article

Computer Simulation of Automotive Air Conditioning - Components, System, and Vehicle: Part 2

2008-04-14
2008-01-1433
In 1972, the first SAE paper describing the use of computer simulation as a design tool for automotive air conditioning was written by these authors. Since then, many such simulations have been used and new tools such as CFD have been applied to this problem. This paper reviews the work over that past 35 years and presents several of the improvements in the basic component and system models that have occurred. The areas where “empirical” information is required for model support and the value of CFD cabin and external air flow modeling are also discussed.
Technical Paper

Influence of Vehicle Body Type on Pedestrian Injury Distribution

2005-04-11
2005-01-1876
Pedestrian impact protection has been a growing area of research over the past twenty or more years. The results from many studies have shown the importance of providing protection to vulnerable road users as a means of reducing roadway fatalities. Most of this research has focused on the vehicle fleet as a whole in datasets that are dominated by passenger cars (cars). Historically, the influence of vehicle body type on injury distribution patterns for pedestrians has not been a primary research focus. In this study we used the Pedestrian Crash Data Study (PCDS) database of detailed pedestrian crash investigations to identify how injury patterns differ for pedestrians struck by light trucks, vans, and sport utility vehicles (LTVs) from those struck by cars. AIS 2+ and 3+ injuries for each segment of vehicles were mapped back to both the body region of the pedestrian injured and the vehicle source linked to that injury in the PCDS database.
Technical Paper

Intelligent Selection of Materials for Brake Linings

2000-10-20
2000-01-2779
Friction materials used in the brake linings of automobiles, trucks, buses and other vehicles are required to satisfy a number of performance demands: they must provide a dependable, consistent level of friction, excellent resistance to wear, adequate heat dissipation, structural integrity, low cost and, if possible, light weight. No single material can meet all of these often conflicting performance criteria, and as a consequence, multiphase composites have been developed, consisting typically of a dozen or more different materials. The choice of materials is crucial in determining the performance attained, yet to date, braking material compositions have been developed largely on the basis of empirical observations.
Technical Paper

Applying the Intent of Federal Motor Vehicle Safety Standards to Vehicles Modified for the Use of Disabled Persons

1992-02-01
920563
Since 1966 the federal government, through the National Highway Traffic Safety Administration, has promulgated regulations governing the crash safety of motor vehicles, with particular attention to passenger cars. However, during the next four years, most of the regulations will also apply to light trucks and vans. There are now 53 Federal Motor Vehicle Safety Standards (FMVSS). These standards primarily regulate the safety of new vehicles. For many disabled persons, especially those confined to wheelchairs, vehicles must be extensively modified to allow them to drive, or to ride as passengers. The objective of this paper is to examine the safety level intended to be afforded to able bodied persons by the crashworthiness FMVSS and to make observations on the special requirements of modified vehicles to afford the same level of safety to disabled persons. We will emphasize the safety needs of those who use vans since vans are the vehicles most extensively modified.
X