Refine Your Search

Topic

Search Results

Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Technical Paper

A Fuel Sensitive Ignition Delay Model for Direct Injection Diesel Engine Operating under EGR Diluted Conditions

2018-04-03
2018-01-0231
This empirical work investigates the impacts of thermodynamic parameters, such as pressure and temperature, and fuel properties, such as fuel Cetane number and aromatic contents on ignition delay in diesel engines. Systematic tests are conducted on a single-cylinder research engine to evaluate the ignition delay changes due to the fuel property differences at low, medium and high engine loads under different EGR dilution ratios. The test fuels offer a range of Cetane numbers from 28 to 54.2 and aromatic contents volume ratios from 19.4% to 46.6%. The experimental results of ignition delays are used to derive an ignition delay model modified from Arrhenius’ expression. Following the same format of Arrhenius’ equation, the model incorporates the pressure and temperature effects, and further includes the impacts of intake oxygen concentration, fuel Cetane number and aromatic contents volume ratio on the ignition delay.
Technical Paper

Early Pilot Injection Strategies for Reactivity Control in Diesel-ethanol Dual Fuel Combustion

2018-04-03
2018-01-0265
This paper examines the diesel-ethanol dual fuel combustion at medium engine loads on a single-cylinder research diesel engine with a compression ratio of 16.5:1. The effect of exhaust gas recirculation (EGR) and ethanol energy ratio was investigated for the dual fuel combustion to achieve simultaneously ultra-low NOx and soot emissions. A medium ethanol ratio of about 0.6 was found suitable to meet the requirements for mixing enhancement and ignition control, which resulted in the lowest NOx and soot emissions among the tested ethanol ratios. A double-pilot injection strategy was found competent to lower the pressure rise rate owing to the reduced fuel quantity in the close-to-TDC injection. The advancement of pilot injection timing tended to reduce the CO and THC emissions, which is deemed beneficial for high EGR operations. The reactivity mutual-modulation between the diesel pilot and the background ethanol mixture was identified.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

2017-03-28
2017-01-0464
Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

Study of Heat Release Shaping via Dual-Chamber Piston Bowl Design to Improve Ethanol-Diesel Combustion Performance

2017-03-28
2017-01-0762
In this work, an innovative piston bowl design that physically divides the combustion chamber into a central zone and a peripheral zone is employed to assist the control of the ethanol-diesel combustion process via heat release shaping. The spatial combustion zone partition divides the premixed ethanol-air mixture into two portions, and the combustion event (timing and extent) of each portion can be controlled by the temporal diesel injection scheduling. As a result, the heat release profile of ethanol-diesel dual-fuel combustion is properly shaped to avoid excessive pressure rise rates and thus to improve the engine performance. The investigation is carried out through theoretical simulation study and empirical engine tests. Parametric simulation is first performed to evaluate the effects of heat release shaping on combustion noise and engine efficiency and to provide boundary conditions for subsequent engine tests.
Technical Paper

A Feasibility Study of Using DI Butanol as an Ignition Source for Dual-Fuel Combustion

2017-03-28
2017-01-0770
The combustion of dual-fuel engines usually uses a pilot flame to burn out a background fuel inside a cylinder under high compression. The background fuel can be either a gaseous fuel or a volatile liquid fuel, commonly with low reactivity to prevent premature combustion and engine knocking; whereas the pilot flame is normally set off with the direct injection of a liquid fuel with adequate reactivity that is suitable for deterministic auto-ignition with a high compression ratio. In this work, directly injected butanol is used to generate the pilot flame, while intake port injected ethanol or butanol is employed as the background fuel. Compared with the conventional diesel-only combustion, dual-fuel operations not only broaden the fuel applicability, but also enhance the potential for clean combustion, in high efficiency engines. The amount of background fuel and the scheduling of pilot flame are investigated through extensive laboratory experiments.
Technical Paper

Fuel Burn Rate Control to Improve Load Capability of Neat n-Butanol Combustion in a Modern Diesel Engine

2016-10-17
2016-01-2301
This research work investigates the control strategies of fuel burn rate of neat n-butanol combustion to improve the engine load capability. Engine tests of homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) with neat n-butanol show promising NOx and smoke emissions; however, the rapid burn rate of n-butanol results in excessive pressure rise rates and limits the engine load capability. A multi-event combustion strategy is developed to modulate the fuel burn rate of the combustion cycle and thus to reduce the otherwise high pressure rise rates at higher engine load levels. In the multi-event combustion strategy, the first combustion event is produced near TDC by the compression ignition of the port injected butanol that resembles the HCCI combustion; the second combustion event occurs near 7~12 degrees after TDC, which is produced by butanol direct injection (DI) after the first HCCI-like combustion event.
Journal Article

Experimental Investigation of Diesel-Ethanol Premixed Pilot-Assisted Combustion (PPAC) in a High Compression Ratio Engine

2016-04-05
2016-01-0781
In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
Technical Paper

Emission Analysis of HCCI Combustion in a Diesel Engine Fueled by Butanol

2016-04-05
2016-01-0749
Advances in engine technology in recent years have led to significant reductions in the emission of pollutants and gains in efficiency. As a facet of investigations into clean, efficient combustion, the homogenous charge compression ignition (HCCI) mode of combustion can improve upon the thermal efficiency and nitrogen oxides emission of conventional spark ignition engines. With respect to conventional diesel engines, the low nitrogen oxides and particulate matter emissions reduce the requirements on the aftertreatment system to meet emission regulations. In this paper, n-butanol, an alcohol fuel with the potential to be derived from renewable sources, was used in a light-duty diesel research engine in the HCCI mode of combustion. Control of the combustion was implemented using the intake pressure and external exhaust gas recirculation. The moderate reactivity of butanol required the assistance of increased intake pressure for ignition at the lower engine load range.
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Technical Paper

Combustion and Exhaust Gas Speciation Analysis of Diesel and Butanol Post Injection

2015-04-14
2015-01-0803
Experimental testing was done with a modern compression ignition engine to study the effect of the engine load and the effect of different fuels on the post injection characteristics. Two different fuels were utilized; ultra-low sulphur diesel and n-butanol. The results showed that a post injection can be an effective method for increasing the operating range of the engine load. Engine operation at high load can be limited by the peak cylinder pressure but the test results showed that an early post injection can increase the engine load without increasing the peak in-cylinder pressure. Neat butanol combustion may have a very high peak in-cylinder pressure and a very high peak pressure rise rate even at low load conditions. The test results showed that a butanol post injection can contribute to engine power without significantly affecting the peak pressure rise rate and the peak in-cylinder pressure.
Journal Article

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-04-14
2015-01-0808
This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
Journal Article

Combustion Simulation of Dual Fuel CNG Engine Using Direct Injection of Natural Gas and Diesel

2015-04-14
2015-01-0851
The increased availability of natural gas (NG) in the U.S. has renewed interest in the application to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties to generate a spatial gradient of fuel-air mixtures and reactivity. Typically, a high octane fuel is premixed by means of port-injection, followed by direct injection of a high cetane fuel late in the compression stroke. Previous work by the authors has shown that NG and diesel RCCI offers improved fuel efficiency and lower oxides of nitrogen (NOx) and soot emissions when compared to conventional diesel diffusion combustion. The work concluded that NG and diesel RCCI engines are load limited by high rates of pressure rise (RoPR) (>15 bar/deg) and high peak cylinder pressure (PCP) (>200 bar).
Technical Paper

Study of Low Temperature Combustion with Neat n-Butanol on a Common-rail Diesel Engine

2015-03-10
2015-01-0003
This study investigates neat n-butanol, as a cleaner power source, to directly replace conventional diesel fuels for enabling low temperature combustion on a modern common-rail diesel engine. Engine tests are performed at medium engine loads (6∼8 bar IMEP) with the single-shot injection strategy for both n-butanol and diesel fuels. As indicated by the experimental results, the combustion of neat n-butanol offers comparable engine efficiency to that of diesel while producing substantially lower NOx emissions even without the use of exhaust gas recirculation. The greater resistance to auto-ignition allows n-butanol to undergo a prolonged ignition delay for air-fuel mixing; the high volatility helps to enhance the cylinder charge homogeneity; the fuel-borne oxygen contributes to smoke reduction and, as a result, the smoke emissions of n-butanol combustion are generally at a near-zero level under the tested engine operating conditions.
Technical Paper

An Enabling Study of Neat n-Butanol HCCI Combustion on a High Compression-ratio Diesel Engine

2015-03-10
2015-01-0001
This work investigates the benefits and challenges of enabling neat n-butanol HCCI combustion on a high compression ratio (18.2:1) diesel engine. Minor engine modifications are made to implement n-butanol port injection while other engine components are kept intact. The impacts of the fuel change, from diesel to n-butanol, are examined through steady-state engine tests with independent control of the intake boost and exhaust gas recirculation. As demonstrated by the test results, the HCCI combustion of a thoroughly premixed n-butanol/air lean mixture offers near-zero smoke and ultralow NOx emissions even without the use of exhaust gas recirculation and produces comparable engine efficiencies to those of conventional diesel high temperature combustion. The test results also manifest the control challenges of running a neat alcohol fuel in the HCCI combustion mode.
Technical Paper

Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas

2014-04-01
2014-01-1321
Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties that are injected at different times to generate a spatial gradient of fuel-air mixtures and reactivity. Researchers have shown that RCCI offers improved fuel efficiency and lower NOx and Soot exhaust emissions when compared to conventional diesel diffusion combustion. The majority of previous research work has been focused on premixed gasoline or ethanol for the low reactivity fuel and diesel for the high reactivity fuel. The increased availability of natural gas (NG) in the U.S. has renewed interest in the application of compressed natural gas (CNG) to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Thus, RCCI using CNG and diesel fuel warrants consideration.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

The Impact of Intake Dilution and Combustion Phasing on the Combustion Stability of a Diesel Engine

2014-04-01
2014-01-1294
Conventionally, the diesel fuel ignites spontaneously following the injection event. The combustion and injection often overlap with a very short ignition delay. Diesel engines therefore offer superior combustion stability characterized by the low cycle-to-cycle variations. However, the enforcement of the stringent emission regulations necessitates the implementation of innovative diesel combustion concepts such as the low temperature combustion (LTC) to achieve ultra-low engine-out pollutants. In stark contrast to the conventional diesel combustion, the enabling of LTC requires enhanced air fuel mixing and hence a longer ignition delay is desired. Such a decoupling of the combustion events from the fuel injection can potentially cause ignition discrepancy and ultimately lead to combustion cyclic variations.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Technical Paper

Effect of Surface Roughness and Sliding Velocity on Tribological Properties of an Oxide-Coated Aluminum Alloy

2014-04-01
2014-01-0957
Aluminum engines have been successfully used to replace heavy gray cast engines to lighten the car's weight and reduce the fuel consumption. To overcome the aluminum alloys' poor wear resistance, cast iron liners and thermal spraying coatings were used as cylinder bore materials for wear protection. A plasma electrolytic oxidation (PEO) technique had also been proposed to produce an oxide coating on aluminum cylinder bore. The oxide coating can have a low coefficient of friction (COF) and minimum wear shown in the lab tests. To conserve more fuel, the stopping and restarting system was introduced when the vehicle was forced to stop immediately for a short time. When the engine was forced to stop and restart, the reciprocating speed of the piston was very slow, and the friction between the piston and the cylinder was high. In this research, a pin-on-disc tribometer was used to investigate tribological behavior of the oxide coating on an aluminum alloy.
X