Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

Investigation of Al2O3-Ni Coated Cast Iron Brake Rotors Under Modified Brake Dynamometer Test Standards

2022-03-29
2022-01-0273
Due to the reduced or less-frequent usages of the friction brakes and the lower brake rotor temperature on electrical vehicles (EV), corrosion would much likely occur on brake rotors. Using hard braking to clean the corroded rotor surfaces often leads to extra rotor surface wear. Improvement in corrosion and wear resistance is an important technological topic to brake rotors for EVs. Many original equipment manufacturers (OEM) and their suppliers are exploring surface treatments including laser cladding and thermal spray processes on cast iron rotors to combat the corrosion issues. However, mentioned surface coating processes increase the cost of brake rotors and there is a need to search for cost-effective coating processes. In this research, a new Al2O3-Ni composite coating was proposed for preparation of a commercial cast iron brake rotor using plasma electrolytic aluminating (PEA) followed by electroless nickel plating (ENP) processes.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

LiDAR and Camera-Based Convolutional Neural Network Detection for Autonomous Driving

2020-04-14
2020-01-0136
Autonomous vehicles are currently a subject of great interest and there is heavy research on creating and improving algorithms for detecting objects in their vicinity. A ROS-based deep learning approach has been developed to detect objects using point cloud data. With encoded raw light detection and ranging (LiDAR) and camera data, several basic statistics such as elevation and density are generated. The system leverages a simple and fast convolutional neural network (CNN) solution for object identification and localization classification and generation of a bounding box to detect vehicles, pedestrians and cyclists was developed. The system is implemented on an Nvidia Jetson TX2 embedded computing platform, the classification and location of the objects are determined by the neural network. Coordinates and other properties of the object are published on to various ROS topics which are then serviced by visualization and data handling routines.
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

2017-03-28
2017-01-0464
Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

Effect of Surface Roughness and Sliding Velocity on Tribological Properties of an Oxide-Coated Aluminum Alloy

2014-04-01
2014-01-0957
Aluminum engines have been successfully used to replace heavy gray cast engines to lighten the car's weight and reduce the fuel consumption. To overcome the aluminum alloys' poor wear resistance, cast iron liners and thermal spraying coatings were used as cylinder bore materials for wear protection. A plasma electrolytic oxidation (PEO) technique had also been proposed to produce an oxide coating on aluminum cylinder bore. The oxide coating can have a low coefficient of friction (COF) and minimum wear shown in the lab tests. To conserve more fuel, the stopping and restarting system was introduced when the vehicle was forced to stop immediately for a short time. When the engine was forced to stop and restart, the reciprocating speed of the piston was very slow, and the friction between the piston and the cylinder was high. In this research, a pin-on-disc tribometer was used to investigate tribological behavior of the oxide coating on an aluminum alloy.
Technical Paper

Active Suspension Handling Simulation using Cosimulation

2010-12-01
2010-01-1582
In this study the capabilities of a semi-active suspension and an active roll suspension are evaluated for comparison with a passive suspension. The vehicle used is a utility truck modeled as a multi-body system in ADAMS/Car while the ECU (electronic control unit) is built in Matlab/Simulink. Cosimulation is used in linking the vehicle model with the controller by exchanging the input and output values of each sub-system with one another. For the simulation models considered, results indicate that for a fish-hook cornering maneuver the semi-active suspension is limited in increasing vehicle performance while the active roll suspension significantly improves it. Further analysis is needed to confirm these findings.
Technical Paper

Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application

2009-04-20
2009-01-0790
Sliding wear of magnesium (Mg) engine cylinder bore surfaces and corrosion of Mg engine coolant channels are the two unsolved critical issues that automakers have to deal with in development of magnesium-intensive engines. In this paper, Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on AJ62 Mg alloy to provide wear and corrosion protection. In order to optimize the PEO process, orthogonal experiments were conducted to investigate the effect of PEO process parameters on the wear properties of PEO coatings. The PEO coatings showed a much better wear resistance, as well as a smaller friction coefficient, than the AJ62 substrate. The galvanic corrosion property of AJ62 Mg coupled with stainless steel and aluminum (Al) was investigated via immersion corrosion test in an engine coolant. Applying PEO coating on Mg can effectively prevent the galvanic corrosion attack to Mg.
Technical Paper

Active Four Wheel Brake Proportioning for Improved Performance and Safety

2008-04-14
2008-01-1224
A vehicle undergoing longitudinal or lateral accelerations experiences load transfer, dynamically changing the normal load carried by each tire. Conventional braking systems are designed only to work adequately over a large range of conditions, but often ignore the dynamic state of the tire's normal load. Fortunately, new developments in braking system hardware give designers more control over the application of braking pressures. By identifying the tires that carry increased normal load, and biasing the braking system toward those tires, total braking force can be increased. The purpose of this research is to investigate advantages of open-loop load transfer based active brake pressure distribution. By estimating the tractive ability of the tires as a function of measurable vehicle conditions, brake pressure can be applied in proportions appropriate for the current dynamic state of the vehicle, referred to as Active Brake Proportioning (ABP).
Technical Paper

Wind Tunnel Study on the “Wake Bubble” of Model Truck

2008-04-14
2008-01-0739
Heavy traffic volume makes tailgating a common picture on the road today. Wake interference, particularly in the scenario when a relatively small sedan drives into the wake of a large truck, may raise some serious highway safety concerns. In this paper, the characteristics of the separation bubble of model trucks with various degrees of details are studied. The objective is to find out the impact of truck model details on the characteristics of the wake bubble. Our wind tunnel results revealed that the degree of model detail has a significant effect on the wake bubble; the bubble length increases with model details.
Technical Paper

Cosimulation of Active Suspension

2005-04-11
2005-01-0984
The purpose of this study is to determine the feasibility of simulating an active suspension using cosimulation. The vehicle used is a utility truck created in ADAMS/View while the E.C.U. (electronic control unit) is implemented in Simulink for both a fully-active and semi-active controller. The LQR (Linear Quadratic Regulator) is used for the fully-active system while the semi-active system uses a switching law adopted from Karnopp et al. {1}. Nonlinear and linear vehicle models are compared and the influence of suspension bushings is examined. All simulations undertaken are geared towards evaluating the ride capabilities of such systems.
X