Refine Your Search

Topic

Search Results

Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Technical Paper

Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations

2013-04-08
2013-01-1197
This paper discusses the development of a novel deformable terrain database and its use in a co-simulation environment with a multibody dynamics vehicle model. The implementation of the model includes a general tire-terrain traction model which is modular to allow for any type of tire model that supports the Standard Tire Interface[1] to operate on the terrain. This allows arbitrarily complex tire geometry to be used, which typically has a large impact on the mobility performance of vehicles operating on deformable terrains. However, this gain in generality comes at the cost that popular analytical pressure-sinkage terramechanics models cannot be used to find the normal pressure and shear stress of the contact patch. Pressure and shear stress are approximated by combining the contributions from tire normal forces, shear stresses and bulldozing forces due to soil rutting.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Journal Article

Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending

2009-11-02
2009-01-2647
This study investigates the potential of controlling premixed charge compression ignition (PCCI and HCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle direct injection of diesel fuel was used for combustion phasing control at both high and low engine loads and was also effective to control the rate of pressure rise. The first part of the study used the KIVA-CHEMKIN code and a reduced primary reference fuel (PRF) mechanism to suggest optimized fuel blends and EGR combinations for HCCI operation at two engine loads (6 and 11 bar net IMEP). It was found that the minimum fuel consumption could not be achieved using either neat diesel fuel or neat gasoline alone, and that the optimal fuel reactivity required decreased with increasing load. For example, at 11 bar net IMEP, the optimum fuel blend and EGR rate for HCCI operation was found to be PRF 80 and 50%, respectively.
Journal Article

Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion

2009-11-02
2009-01-2699
The effects of spray targeting on mixing, combustion, and pollutant formation under a low-load, late-injection, low-temperature combustion (LTC) diesel operating condition are investigated by optical engine measurements and multi-dimensional modeling. Three common spray-targeting strategies are examined: conventional piston-bowl-wall targeting (152° included angle); narrow-angle floor targeting (124° included angle); and wide-angle piston-bowl-lip targeting (160° included angle). Planar laser-induced fluorescence diagnostics in a heavy-duty direct-injection optical diesel engine provide two-dimensional images of fuel-vapor, low-temperature ignition (H2CO), high-temperature ignition (OH) and soot-formation species (PAH) to characterize the LTC combustion process.
Technical Paper

Neutron Imaging of Diesel Particulate Filters

2009-11-02
2009-01-2735
This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500 rpm, 2.6 bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Technical Paper

Investigation of Bulk In-Cylinder Stratification with Split Intake Runners

2007-10-29
2007-01-4044
The mixing between the flows introduced through different intake valves of a four-valve engine was investigated optically. Each valve was fed from a different intake system, and the relative sensitivity to different flow parameters (manipulated with the goal of enhancing the bulk in-cylinder stratification) was investigated. Flow manipulation was achieved in three primary ways: modifying the intake runner geometry upstream of the head, introducing flow-directing baffles into the intake port, and attaching flow break-down screens to the intake valves. The relative merits of each flow manipulation method was evaluated using planar laser-induced fluorescence (PLIF) of 3-pentanone, which was introduced to the engine through only one intake valve. Images were acquired from 315° bTDC through 45° bTDC, and the level of in-cylinder stratification was evaluated on an ensemble and cycle-to-cycle basis using a novel column-based probability distribution function (PDF) contour plot.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2007-04-16
2007-01-0119
A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

CFD Analysis of Flow Field and Pressure Losses in Carburetor Venturi

2006-11-13
2006-32-0113
A commercial CFD package was used to develop a three-dimensional, fully turbulent model of the compressible flow across a complex-geometry venturi, such as those typically found in small engine carburetors. The results of the CFD simulations were used to understand the effect of the different obstacles in the flow on the overall discharge coefficient and the static pressure at the tip of the fuel tube. It was found that the obstacles located at the converging nozzle of the venturi do not cause significant pressure losses, while those obstacles that create wakes in the flow, such as the fuel tube and throttle plate, are responsible for most of the pressure losses. This result indicated that an overall discharge coefficient can be used to correct the mass flow rate, while a localized correction factor can be determined from three-dimensional CFD simulations in order to calculate the static pressure at locations of interest within the venturi.
Technical Paper

Numerical and Theoretical Fuel Flow Analysis of Small Engine Carburetor Idle Circuits

2006-11-13
2006-32-0111
This paper presents a theoretical analysis of the fuel and air flows within the idle circuit found in simple carburetors. The idle circuit is modeled numerically using a dynamic model that considers the resistances of the flow paths as well as the inertia of the fuel. The modeling methodology is flexible, in that the organization and techniques can be applied to any configuration and geometry. The numerical model calculates the fuel flow response of carburetor idle/transition circuits to pressure variations associated with air flow through the venturi and around the throttle plate. The model is implemented for a typical small engine carburetor and the nominal results are presented for this specific design.
Technical Paper

Spray Targeting to Minimize Soot and CO Formation in Premixed Charge Compression Ignition (PCCI) Combustion with a HSDI Diesel Engine

2006-04-03
2006-01-0918
The effect of spray targeting on exhaust emissions, especially soot and carbon monoxide (CO) formation, were investigated in a single-cylinder, high-speed, direct-injection (HSDI) diesel engine. The spray targeting was examined by sweeping the start-of-injection (SOI) timing with several nozzles which had different spray angles ranging from 50° to 154°. The tests were organized to monitor the emissions in Premixed Charge Compression Ignition (PCCI) combustion by introducing high levels of EGR (55%) with a relatively low compression ratio (16.0) and an open-crater type piston bowl. The study showed that there were optimum targeting spots on the piston bowl with respect to soot and CO formation, while nitric oxide (NOx) formation was not affected by the targeting. The soot and CO production were minimized when the spray was targeted at the edge of the piston bowl near the squish zone, regardless of the spray angle.
Technical Paper

Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine

2006-04-03
2006-01-0055
Three different approaches for modeling diesel engine combustion are compared against cylinder pressure, NOx emissions, high-speed soot luminosity imaging, and 2-color thermometry data from a heavy-duty DI diesel engine. A characteristic time combustion (KIVA-CTC) model, a representative interactive flamelet (KIVA-RIF) model, and direct integration using detailed chemistry (KIVA-CHEMKIN) were integrated into the same version of the KIVA-3v computer code. In this way, the computer code provides a common platform for comparing various combustion models. Five different engine operating strategies that are representative of several different combustion regimes were explored in the experiments and model simulations. Two of the strategies produce high-temperature combustion with different ignition delays, while the other three use dilution to achieve low-temperature combustion (LTC), with early, late, or multiple injections.
Technical Paper

Implementation of a Theoretical Carburetor Model in One-Dimensional Engine Simulation Software

2006-04-03
2006-01-1543
The main circuits of a small engine carburetor can be represented as a complex, dynamic, two-phase flow fluid network. This paper presents the theoretical characterization of a dynamic one-dimensional model of fuel and air flow in small engine carburetors and its implementation into a one-dimensional engine simulation software package. This implementation allows for studying the effect of changes in individual carburetor parts on engine performance. The characterization of the model indicated that the dynamic behavior of the entire flow network can be captured by the solution of the instantaneous momentum balance equation on the single-phase liquid elements of the network, simplifying the dynamic model considerably. The second part of this work discusses the implementation into the one-dimensional engine simulation package, and shows examples of the studies that the coupled implementation allow for.
Technical Paper

Application of a Novel White Laser Sensor to an HCCI Engine

2006-04-03
2006-01-1200
A laser-based sensor has been developed which generates short multicolored pulses for use with absorption spectroscopy techniques for the collection of thermodynamic information in an HCCI engine. Our sensor is based on supercontinuum generation which is accomplished by coupling a short-duration, high energy laser pulse (the pump) into fiber optics where colors other than the pump are generated through various nonlinear phenomena. The resulting “white pulse” is then stretched out in time by dispersive media (e.g., another fiber) to a time scale which can be collected by a high speed detector and oscilloscope. Although other multicolored (wavelength agile) laser based techniques generated by scanning mirrors or gratings have been applied to HCCI combustion [1], our supercontinuum approach offers a broad range of wavelengths with both high spectral and high temporal resolution from a source with no moving parts.
Technical Paper

Application of A Multiple-Step Phenomenological Soot Model to HSDI Diesel Multiple Injection Modeling

2005-04-11
2005-01-0924
Multiple injection strategies have been revealed as an efficient means to reduce diesel engine NOx and soot emissions simultaneously, while maintaining or improving its thermal efficiency. Empirical soot models widely adopted in engine simulations have not been adequately validated to predict soot formation with multiple injections. In this work, a multiple-step phenomenological (MSP) soot model that includes particle inception, surface growth, oxidation, and particle coagulation was revised to better describe the physical processes of soot formation in diesel combustion. It was found that the revised MSP model successfully reproduces measured soot emission dependence on the start-of-injection timing, while the two-step empirical and the original MSP soot models were less accurate. The revised MSP model also predicted reasonable soot and intermediate species spatial profiles within the combustion chamber.
Technical Paper

An Experimental Investigation of In-Cylinder Processes Under Dual-Injection Conditions in a DI Diesel Engine

2004-06-08
2004-01-1843
Fuel-injection schedules that use two injection events per cycle (“dual-injection” approaches) have the potential to simultaneously attenuate engine-out soot and NOx emissions. The extent to which these benefits are due to enhanced mixing, low-temperature combustion modes, altered combustion phasing, or other factors is not fully understood. A traditional single-injection, an early-injection-only, and two dual-injection cases are studied using a suite of imaging diagnostics including spray visualization, natural luminosity imaging, and planar laser-induced fluorescence (PLIF) imaging of nitric oxide (NO). These data, coupled with heat-release and efficiency analyses, are used to enhance understanding of the in-cylinder processes that lead to the observed emissions reductions.
Technical Paper

Simulation of Effects of Valve Pockets and Internal Residual Gas Distribution on HSDI Diesel Combustion and Emissions

2004-03-08
2004-01-0105
Experiments show that intake flow details have a significant influence on High-Speed Direct-Injection (HSDI) diesel engine soot emissions. Four different intake modes were simulated using the combination of the CFD codes, STAR-CD and KIVA-3V, to investigate spray-intake flow-emission interaction characteristics. The simulation results were compared to steady-state flow bench data and engine experimental data. It was found that it is difficult to accurately predict the timing of the small pilot and main combustion events, simultaneously, with current simplified ignition models. NOx emissions were predicted well, however, an insensitivity of the soot emissions to the details of the intake process was found, mainly due to the deficiencies in predicting the ignition delay. The results show that a strong swirling flow causes the formed soot to remain within the bowl, leading to high soot emissions.
X