Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines

2019-04-02
2019-01-0228
A new generation of low heat capacitance Thermal Barrier Coatings (TBCs) has been developed under U.S. Dept. of Energy / Advanced Research Projects Agency - Energy (ARPA-E) sponsored research. The TBCs developed under this project have significantly lower thermal conductivity of < 0.35 W/m-K, thermal heat capacitance of < 500 kJ/m3-K, and density of <0.35 g/cm3. Two different binder types were used for thermal barrier coatings applied by High Velocity Low Pressure (HVLP) spraying to the piston, cylinder head, and valve combustion surfaces of a small natural gas engine. The effects of thermal barrier coatings on engine efficiency and knock characteristics were studied in a small, high compression ratio, spark-ignition, internal combustion engine operating on methane number fuels from 60 to 100. The new TBCs with low thermal conductivity and low thermal heat capacities have been shown to increase overall engine efficiency through reduced heat transfer to the piston and cylinder head.
Technical Paper

Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels

2013-04-08
2013-01-0263
Advanced combustion systems that simultaneously address PM and NOx while retaining the high efficiency of modern diesel engines, are being developed around the globe. One of the most difficult problems in the area of advanced combustion technology development is the control of combustion initiation and retaining power density. During the past several years, significant progress has been accomplished in reducing emissions of NOx and PM through strategies such as LTC/HCCI/PCCI/PPCI and other advanced combustion processes; however control of ignition and improving power density has suffered to some degree - advanced combustion engines tend to be limited to the 10 bar BMEP range and under. Experimental investigations have been carried out on a light-duty DI multi-cylinder diesel automotive engine. The engine is operated in low temperature combustion (LTC) mode using 93 RON (Research Octane Number) and 74 RON fuel.
Technical Paper

Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver

2012-04-16
2012-01-1110
Premixed compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions and diesel-like efficiency. However, these strategies are generally confined to low loads due to difficulties controlling the combustion phasing and heat release rate. Recent experiments have demonstrated that dual-fuel reactivity-controlled compression ignition (RCCI) combustion can improve PCI combustion control and expand the PCI load range. Previous studies have explored RCCI operation using port-fuel injection (PFI) of gasoline and direct-injection (DI) of diesel fuel. In this study, experiments are performed using a light-duty, single-cylinder research engine to investigate RCCI combustion using a single fuel with the addition of a cetane improver 2-ethylhexyl nitrate (EHN). The fuel delivery strategy consists of port-fuel injection of E10 (i.e., 10% ethanol in gasoline) and direct-injection of E10 mixed with 3% EHN.
X