Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition

2024-04-09
2024-01-1980
The SAE AutoDrive Challenge II is a four-year collegiate competition dedicated to developing a Level 4 autonomous vehicle by 2025. In January 2023, the participating teams each received a Chevy Bolt EUV. Within a span of five months, the second phase of the competition took place in Ann Arbor, MI. The authors of this contribution, who participated in this event as team Wisconsin Autonomous representing the University of Wisconsin–Madison, secured second place in static events and third place in dynamic events. This has been accomplished by reducing reliance on the actual vehicle platform and instead leveraging physical analogs and simulation. This paper outlines the software and hardware infrastructure of the competing vehicle, touching on issues pertaining sensors, hardware, and the software architecture employed on the autonomous vehicle. We discuss the LiDAR-camera fusion approach for object detection and the three-tier route planning and following systems.
Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Estimating Battery State-of-Charge using Machine Learning and Physics-Based Models

2023-04-11
2023-01-0522
Lithium-ion and Lithium polymer batteries are fast becoming ubiquitous in high-discharge rate applications for military and non-military systems. Applications such as small aerial vehicles and energy transfer systems can often function at C-rates greater than 1. To maximize system endurance and battery health, there is a need for models capable of precisely estimating the battery state-of-charge (SoC) under all temperature and loading conditions. However, the ability to perform state estimation consistently and accurately to within 1% error has remained unsolved. Doing so can offer enhanced endurance, safety, reliability, and planning, and additionally, simplify energy management. Therefore, the work presented in this paper aims to study and develop experimentally validated mathematical models capable of high-accuracy battery SoC estimation.
Journal Article

Non-Intrusive Accelerometer-Based Sensing of Start-Of-Combustion in Compression-Ignition Engines

2023-04-11
2023-01-0292
A non-intrusive sensing technique to determine start of combustion for mixing-controlled compression-ignition engines was developed based on an accelerometer mounted to the engine block of a 4-cylinder automotive turbo-diesel engine. The sensing approach is based on a physics-based conceptual model for the signal generation process that relates engine block acceleration to the time derivative of heat release rate. The frequency content of the acceleration and pressure signals was analyzed using the magnitude-squared coherence, and a suitable filtering technique for the acceleration signal was selected based on the result. A method to determine start of combustion (SOC) from the acceleration measurements is presented and validated.
Journal Article

Active Learning Optimization for Boundary Identification Using Machine Learning-Assisted Method

2022-03-29
2022-01-0783
Identifying edge cases for designed algorithms is critical for functional safety in autonomous driving deployment. In order to find the feasible boundary of designed algorithms, simulations are heavily used. However, simulations for autonomous driving validation are expensive due to the requirement of visual rendering, physical simulation, and AI agents. In this case, common sampling techniques, such as Monte Carlo Sampling, become computationally expensive due to their sample inefficiency. To improve sample efficiency and minimize the number of simulations, we propose a tailored active learning approach combining the Support Vector Machine (SVM) and the Gaussian Process Regressor (GPR). The SVM learns the feasible boundary iteratively with a new sampling point via active learning. Active Learning is achieved by using the information of the decision boundary of the current SVM and the uncertainty metric calculated by the GPR.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Traffic State Identification Using Matrix Completion Algorithm Under Connected and Automated Environment

2021-12-15
2021-01-7004
Traffic state identification is a key problem in intelligent transportation system. As a new technology, connected and automated vehicle can play a role of identifying traffic state with the installation of onboard sensors. However, research of lane level traffic state identification is relatively lacked. Identifying lane level traffic state is helpful to lane selection in the process of driving and trajectory planning. In addition, traffic state identification precision with low penetration of connected and automated vehicles is relatively low. To fill this gap, this paper proposes a novel method of identifying traffic state in the presence of connected and automated vehicles with low penetration rate. Assuming connected and automated vehicles can obtain information of surrounding vehicles’, we use the perceptible information to estimate imperceptible information, then traffic state of road section can be inferred.
Technical Paper

Parallel Load Balancing Strategies for Mesh-Independent Spray Vaporization and Collision Models

2021-04-06
2021-01-0412
Appropriate spray modeling in multidimensional simulations of diesel engines is well known to affect the overall accuracy of the results. More and more accurate models are being developed to deal with drop dynamics, breakup, collisions, and vaporization/multiphase processes; the latter ones being the most computationally demanding. In fact, in parallel calculations, the droplets occupy a physical region of the in-cylinder domain, which is generally very different than the topology-driven finite-volume mesh decomposition. This makes the CPU decomposition of the spray cloud severely uneven when many CPUs are employed, yielding poor parallel performance of the spray computation. Furthermore, mesh-independent models such as collision calculations require checking of each possible droplet pair, which leads to a practically intractable O(np2/2) computational cost, np being the total number of droplets in the spray cloud, and additional overhead for parallel communications.
Technical Paper

Design of a Mild Hybrid Electric Vehicle with CAVs Capability for the MaaS Market

2020-04-14
2020-01-1437
There is significant potential for connected and autonomous vehicles to impact vehicle efficiency, fuel economy, and emissions, especially for hybrid-electric vehicles. These improvements could have large-scale impact on oil consumption and air-quality if deployed in large Mobility-as-a-Service or ride-sharing fleets. As part of the US Department of Energy's current Advanced Vehicle Technology Competition (AVCT), EcoCAR: The Mobility Challenge, Mississippi State University’s EcoCAR Team is redesigning and doing the development work necessary to convert a conventional gasoline spark-ignited 2019 Chevy Blazer into a hybrid-electric vehicle with SAE Level 2 autonomy. The target consumer segments for this effort are the Mobility-as-a-Service fleet owners, operators and riders. To accomplish this conversion, the MSU team is implementing a P4 mild hybridization strategy that is expected to result in a 30% increase in fuel economy over the stock Blazer.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

2018-04-03
2018-01-1078
We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Technical Paper

Comparison of Linear, Non-Linear and Generalized RNG-Based k-epsilon Models for Turbulent Diesel Engine Flows

2017-03-28
2017-01-0561
In this work, linear, non-linear and a generalized renormalization group (RNG) two-equation RANS turbulence models of the k-epsilon form were compared for the prediction of turbulent compressible flows in diesel engines. The object-oriented, multidimensional parallel code FRESCO, developed at the University of Wisconsin, was used to test the alternative models versus the standard k-epsilon model. Test cases featured the academic backward facing step and the impinging gas jet in a quiescent chamber. Diesel engine flows featured high-pressure spray injection in a constant volume vessel from the Engine Combustion Network (ECN), as well as intake flows in a high-swirl diesel engine. For the engine intake flows, a model of the Sandia National Laboratories 1.9L light-duty single cylinder optical engine was used.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Technical Paper

Initial Design and Refinement of a High-Efficiency Electric Drivetrain for a Zero-Emissions Snowmobile

2009-11-03
2009-32-0108
The University of Wisconsin - Madison Clean Snowmobile team has designed, constructed and now refined an electric snowmobile with 40 km (24 mi) range and acceleration comparable to a 75 kW (100 hp) internal-combustion-powered snowmobile. Starting with a Polaris IQ Fusion chassis, a direct-drive chain-case was engineered to couple a General Motors EV1 copper-bar rotor AC induction electric motor to the track drive shaft. The battery pack uses 104 28 V, 2.8 A-hr Lithium-Ion battery modules supplied by Milwaukee Tool to store 8.2 kW-hr of energy at a nominal voltage of 364 V. Power is transmitted to the electric motor via an Azure Dynamics DMOC445LLC motor controller. All of the components fit within the original sled envelope, leading to a vehicle with conventional appearance and a total mass of 313 kg (690 lb). The vehicle, dubbed the BuckEV, accelerates to 150 m (500 ft) in 6.9 seconds and has a top speed of 122 km/hr (76 mph) with a pass-by sound level of 55 dB.
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
X