Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Exploration of Fuel Property Impacts on the Combustion of Late Post Injections Using Binary Blends and High-Reactivity Ether Bioblendstocks

2023-04-11
2023-01-0264
In this study, the impacts of fuel volatility and reactivity on combustion stability and emissions were studied in a light-duty single-cylinder research engine for a three-injection catalyst heating operation strategy with late post-injections. N-heptane and blends of farnesane/2,2,4,4,6,8,8-heptamethylnonane were used to study the impacts of volatility and reactivity. The effect of increased chemical reactivity was also analysed by comparing the baseline #2 diesel operation with a pure blend of mono-ether components (CN > 100) representative of potential high cetane oxygenated bioblendstocks and a 25 vol.% blend of the mono-ether blend and #2 diesel with a cetane number (CN) of 55. At constant reactivity, little to no variation in combustion performance was observed due to differences in volatility, whereas increased reactivity improved combustion stability and efficiency at late injection timings.
Technical Paper

Combined Impacts of Engine Speed and Fuel Reactivity on Energy-Assisted Compression-Ignition Operation with Sustainable Aviation Fuels

2023-04-11
2023-01-0263
The combined impacts of engine speed and fuel reactivity on energy-assisted compression-ignition (EACI) combustion using a commercial off-the-shelf (COTS) ceramic glow plug for low-load operation werexxz investigated. The COTS glow plug, used as the ignition assistant (IA), was overdriven beyond its conventional operation range. Engine speed was varied from 1200 RPM to 2100 RPM. Three fuel blends consisting of a jet-A fuel with military additives (F24) and a low cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) were tested with cetane numbers (CN) of 25.9, 35.5, and 48.5. The ranges of engine speed and fuel cetane numbers studied are significantly larger than those in previous studies of EACI or glow-plug assisted combustion, and the simultaneous variation of engine speed and fuel reactivity are unique to this work. For each speed and fuel, a single-injection of fixed mass was used and the start of injection (SOI) was swept for each IA power.
Journal Article

Non-Intrusive Accelerometer-Based Sensing of Start-Of-Combustion in Compression-Ignition Engines

2023-04-11
2023-01-0292
A non-intrusive sensing technique to determine start of combustion for mixing-controlled compression-ignition engines was developed based on an accelerometer mounted to the engine block of a 4-cylinder automotive turbo-diesel engine. The sensing approach is based on a physics-based conceptual model for the signal generation process that relates engine block acceleration to the time derivative of heat release rate. The frequency content of the acceleration and pressure signals was analyzed using the magnitude-squared coherence, and a suitable filtering technique for the acceleration signal was selected based on the result. A method to determine start of combustion (SOC) from the acceleration measurements is presented and validated.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
Technical Paper

Dynamic Cylinder Deactivation of ICE - Simulation Methodology

2021-04-06
2021-01-0682
Cylinder deactivation is a well-known approach to reduce the displacement of the ICE during its operation. This helps increase specific load of active cylinders and thus improve ICE efficiency. In serial production, cylinder deactivation is massively utilized in the static form, which keeps a set of cylinders deactivated for the time of the low load operation mode. An advanced cylinder deactivation can be applied in a dynamic form, in which all or a set of cylinders follow a specific deactivation pattern, which consist of a number of firing and deactivated cycles. This consequently forms a new basic repeating unit of the engine, so called supercycle. Such a deactivation strategy allows to dynamically vary the engine displacement in finer steps even for a small number of cylinders. It enables higher displacement reduction, while keeping better NVH, uniform thermal and mechanical stresses in the engine, compared to the conventional deactivation.
Technical Paper

Parallel Load Balancing Strategies for Mesh-Independent Spray Vaporization and Collision Models

2021-04-06
2021-01-0412
Appropriate spray modeling in multidimensional simulations of diesel engines is well known to affect the overall accuracy of the results. More and more accurate models are being developed to deal with drop dynamics, breakup, collisions, and vaporization/multiphase processes; the latter ones being the most computationally demanding. In fact, in parallel calculations, the droplets occupy a physical region of the in-cylinder domain, which is generally very different than the topology-driven finite-volume mesh decomposition. This makes the CPU decomposition of the spray cloud severely uneven when many CPUs are employed, yielding poor parallel performance of the spray computation. Furthermore, mesh-independent models such as collision calculations require checking of each possible droplet pair, which leads to a practically intractable O(np2/2) computational cost, np being the total number of droplets in the spray cloud, and additional overhead for parallel communications.
Technical Paper

Design of Shift Fork and Sleeve Optimized towards Future Application of Powder Metal

2020-04-14
2020-01-1322
The paper will present the design of shift fork for automotive manual gearbox dedicated for the manufacturing with powder metal technology. Based on limitations and requirements of new production technology of shifting sleeve, the new design of shifting sleeve and shifting fork are created. The prototypes of shift fork and sleeve were built, but for cost reasons, were manufactured from steel. The functionality of several forks with different tolerances was tested. Prototypes were put through functional and durability tests on testing bench in real automotive gearbox. The tests were accomplished on the inertia test stand. Drawings and CAD models of tested prototypes, custom tools and designed shift forks are described in detail in this article.
Technical Paper

The Effect of Ethanol Fuels on the Power and Emissions of a Small Mass-Produced Utility Engine

2020-01-24
2019-32-0607
The effect of low level ethanol fuel on the power and emissions characteristics was studied in a small, mass produced, carbureted, spark-ignited, Briggs and Stratton Vanguard 19L2 engine. Ethanol has been shown to be an attractive renewable fuel by the automotive industry; having anti-knock properties, potential power benefits, and emissions reduction benefits. With increasing availability and the possible mandates of higher ethanol content in pump gasoline, there is interest in exploring the effect of using higher content ethanol fuels in the small utility engine market. The fuels in this study were prepared by gravimetrically mixing 98.7% ethanol with a balance of 87 octane no-ethanol gasoline in approximately 5% increments from pure gasoline to 25% ethanol. Alcor Petrolab performed fuel analysis on the blended fuels and determined the actual volumetric ethanol content was within 2%.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Utilization of a Twin Scroll Radial Centripetal Turbine Model

2019-04-02
2019-01-0191
The article describes the utilization of the map-less approach in simulation of single and twin scroll radial turbines. The conventional steady flow maps are not used. An unsteady 1-D model of a twin scroll turbine includes scrolls, mixing of flows upstream of the impeller, turbine wheel, leakages and outlet pipe. Developed physical turbine model was calibrated with data from experiments at specific steady flow turbocharger test bed with open loop, which enables to achieve arbitrary level of an impeller admission via throttling in separate sections. A selected twin scroll turbine was tested under full, partial flow admission of an impeller and extreme partial admission with closed section. The required number of operating points is relatively low compared with conventional steady flow maps, when the maps have to be generated for each level of an impeller admission. The calibration process of the full 1-D turbine model is described.
Technical Paper

Optimized Driving Cycle Oriented Control for a Highly Turbocharged Gas Engine

2019-04-02
2019-01-0193
The article is focused on a 1-D drive dynamic simulation of a highly turbocharged gas engine. A mono fuel CNG engine has been developed as a downsized replacement of the diesel engine for a medium size van. The basic engine parameters optimization is provided in a steady state operation and a control adjustment is applied to a dynamic vehicle model for a transient response improvement in highly dynamic operation modes of the WLTC (world light duty test cycle), selected for investigation. Vehicle simulation model with optimized control system is used for driving cycle fuel consumption and CO2 emissions predictions compared with the basic engine settings.
Technical Paper

Scavenged Pre-Chamber Volume Effect on Gas Engine Performance and Emissions

2019-04-02
2019-01-0258
This work presents development and results of experimental and numerical investigations of an advanced ignition system with a scavenged pre-chamber for a natural gas fueled engine with a bore of 102 mm and stroke of 120 mm. Two combustion concepts are taken into account. The lean burn concept is used to minimize engine out emissions of nitric oxides (NOx) and to achieve high thermal efficiency at low load. The in-house designed scavenged pre-chamber enables the engine to be operated up to the air-excess ratio (lambda) of 2. A stoichiometric (lambda=1) operation is also possible. It is compatible with a three-way catalyst concept, at high load and potentially transient modes and can provide as high as possible engine power density. The influence of the scavenged pre-chamber volume on the combustion and performance within the range of the operational points of the naturally aspirated engine is presented in this paper.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Journal Article

Divided Exhaust Period Implementation in a Light-Duty Turbocharged Dual-Fuel RCCI Engine for Improved Fuel Economy and Aftertreatment Thermal Management: A Simulation Study

2018-04-03
2018-01-0256
Although turbocharging can extend the high load limit of low temperature combustion (LTC) strategies such as reactivity controlled compression ignition (RCCI), the low exhaust enthalpy prevalent in these strategies necessitates the use of high exhaust pressures for improving turbocharger efficiency, causing high pumping losses and poor fuel economy. To mitigate these pumping losses, the divided exhaust period (DEP) concept is proposed. In this concept, the exhaust gas is directed to two separate manifolds: the blowdown manifold which is connected to the turbocharger and the scavenging manifold that bypasses the turbocharger. By separately actuating the exhaust valves using variable valve actuation, the exhaust flow is split between two manifolds, thereby reducing the overall engine backpressure and lowering pumping losses. In this paper, results from zero-dimensional and one-dimensional simulations of a multicylinder RCCI light-duty engine equipped with DEP are presented.
Technical Paper

Development of a Pre-Chamber Ignition System for Light Duty Truck Engine

2018-04-03
2018-01-1147
In this article the development of a combustion system with a fuel-scavenged pre-chamber is described. Such a system is commonly used in large-bore engines operated with extremely lean mixtures. The authors implemented the scavenged pre-chamber into a light duty truck-size engine with a bore of 102 mm. The lean burn strategy is intended to achieve very low nitrogen oxide (NOx) emissions at low load. At full load a stoichiometric mixture strategy is applied to achieve sufficient power density while simultaneously enabling the use of a relatively simple three-way catalytic converter for exhaust gas aftertreatment. This work outlines the pre-chamber design features and introduces the results of an experimental investigation of the effect of pre-chamber ignition on a single cylinder testing engine.
Technical Paper

Experimental Investigation of Fuel Injection and Spark Timing for the Combustion of n-Butanol and iso-Butanol and Their Blends with Gasoline in a Two-Cylinder SI Engine

2017-09-04
2017-24-0115
In this study, the combustion of butanol, neat and mixed with gasoline, was investigated on a 0.6 liter two-cylinder spark ignition engine with fully adjustable fuel injection and spark timing, coupled with an eddy current dynamometer. Two isomers of butanol, n-butanol and iso-butanol, were examined. This basic parameter study gives information about potential requirements of engine control systems for butanol FFV. Compared to the traditionally used ethanol, butanol does not exhibit hygroscopic behaviour, is chemically less aggressive and has higher energy density. On other hand, different laminar burning velocity and higher boiling temperature of butanol, compared to gasoline, requires some countermeasures to keep the engine operation reliable and efficient.
Technical Paper

Comparison of Linear, Non-Linear and Generalized RNG-Based k-epsilon Models for Turbulent Diesel Engine Flows

2017-03-28
2017-01-0561
In this work, linear, non-linear and a generalized renormalization group (RNG) two-equation RANS turbulence models of the k-epsilon form were compared for the prediction of turbulent compressible flows in diesel engines. The object-oriented, multidimensional parallel code FRESCO, developed at the University of Wisconsin, was used to test the alternative models versus the standard k-epsilon model. Test cases featured the academic backward facing step and the impinging gas jet in a quiescent chamber. Diesel engine flows featured high-pressure spray injection in a constant volume vessel from the Engine Combustion Network (ECN), as well as intake flows in a high-swirl diesel engine. For the engine intake flows, a model of the Sandia National Laboratories 1.9L light-duty single cylinder optical engine was used.
X