Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a high-speed light-duty Diesel Engine

2019-09-09
2019-24-0167
In this work, we studied the effects of piston bowl design on combustion in a light-duty direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the SNL single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations carried out with the FRESCO platform featuring full-geometric modeling of the engine, were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

On Simulating Sloshing in Vehicle Dynamics

2018-04-03
2018-01-1110
We present an approach in which we use simulation to capture the two-way coupling between the dynamics of a vehicle and that of a fluid that sloshes in a tank attached to the vehicle. The simulation is carried out in and builds on support provided by two modules: Chrono::FSI (Fluid-Solid Interaction) and Chrono::Vehicle. The dynamics of the fluid phase is governed by the mass and momentum (Navier-Stokes) equations, which are discretized in space via a Lagrangian approach called Smoothed Particle Hydrodynamics. The vehicle dynamics is the solution of a set of differential algebraic equations of motion. All equations are discretized in time via a half-implicit symplectic Euler method. This solution approach is general - it allows for fully three dimensional (3D) motion and nonlinear transients. We demonstrate the solution in conjunction with the simulation of a vehicle model that performs a constant radius turn and double lane change maneuver.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

2018-04-03
2018-01-1078
We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Journal Article

Divided Exhaust Period Implementation in a Light-Duty Turbocharged Dual-Fuel RCCI Engine for Improved Fuel Economy and Aftertreatment Thermal Management: A Simulation Study

2018-04-03
2018-01-0256
Although turbocharging can extend the high load limit of low temperature combustion (LTC) strategies such as reactivity controlled compression ignition (RCCI), the low exhaust enthalpy prevalent in these strategies necessitates the use of high exhaust pressures for improving turbocharger efficiency, causing high pumping losses and poor fuel economy. To mitigate these pumping losses, the divided exhaust period (DEP) concept is proposed. In this concept, the exhaust gas is directed to two separate manifolds: the blowdown manifold which is connected to the turbocharger and the scavenging manifold that bypasses the turbocharger. By separately actuating the exhaust valves using variable valve actuation, the exhaust flow is split between two manifolds, thereby reducing the overall engine backpressure and lowering pumping losses. In this paper, results from zero-dimensional and one-dimensional simulations of a multicylinder RCCI light-duty engine equipped with DEP are presented.
Technical Paper

The Robustly-Safe Automated Driving System for Enhanced Active Safety

2017-03-28
2017-01-1406
Road safety is one of the major concerns for automated vehicles. In order for these vehicles to interact safely and efficiently with the other road participants, the behavior of the automated vehicles should be carefully designed. Liu and Tomizuka proposed the Robustly-safe Automated Driving system (ROAD) which prevents or minimizes occurrences of collisions of the automated vehicle with other road participants while maintaining efficiency. In this paper, a set of design principles are elaborated as an extension of the previous work, including robust perception and cognition algorithms for environment monitoring and high level decision making and low level control algorithms for safe maneuvering of the automated vehicle.
Technical Paper

Comparison of Linear, Non-Linear and Generalized RNG-Based k-epsilon Models for Turbulent Diesel Engine Flows

2017-03-28
2017-01-0561
In this work, linear, non-linear and a generalized renormalization group (RNG) two-equation RANS turbulence models of the k-epsilon form were compared for the prediction of turbulent compressible flows in diesel engines. The object-oriented, multidimensional parallel code FRESCO, developed at the University of Wisconsin, was used to test the alternative models versus the standard k-epsilon model. Test cases featured the academic backward facing step and the impinging gas jet in a quiescent chamber. Diesel engine flows featured high-pressure spray injection in a constant volume vessel from the Engine Combustion Network (ECN), as well as intake flows in a high-swirl diesel engine. For the engine intake flows, a model of the Sandia National Laboratories 1.9L light-duty single cylinder optical engine was used.
Technical Paper

Investigating Air Handling Requirements of High Load Low Speed Reactivity Controlled Compression Ignition (RCCI) Combustion

2016-04-05
2016-01-0782
Past research has shown that reactivity controlled compression ignition (RCCI) combustion offers efficiency and NOx and soot advantages over conventional diesel combustion at mid load conditions. However, at high load and low speed conditions, the chemistry timescale of the fuel shortens and the engine timescale lengthens. This mismatch in timescales makes operation at high load and low speed conditions difficult. High levels of exhaust gas recirculation (EGR) can be used to extend the chemistry timescales; however, this comes at the penalty of increased pumping losses. In the present study, targeting the high load - low speed regime, computational optimizations of RCCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The two fuels used for the study were gasoline (low reactivity) and diesel (high reactivity).
Journal Article

Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions

2016-01-03
2016-01-9045
The downsizing of internal combustion engines to increase fuel economy leads to challenges in both obtaining ignition and stabilizing combustion at boosted intake pressures and high exhaust gas recirculation dilution conditions. The use of non-thermal plasma ignition technologies has shown promise as a means to more reliably ignite dilute charge mixtures at high pressures. Despite progress in fundamental research on this topic, both the capabilities and operation implications of emerging non-thermal plasma ignition technologies in internal combustion engine applications are not yet fully explored. In this work, we document the effects of using a corona discharge ignition system in a single cylinder gasoline direct injection research engine relative to using a traditional inductive spark ignition system under conditions associated with both naturally aspirated (8 bar BMEP) and boosted (20 bar BMEP) loads at moderate (2000 rpm) and high (4000 rpm) engine speeds.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

Effect of Equivalence Ratio on the Particulate Emissions from a Spark-Ignited, Direct-Injected Gasoline Engine

2013-04-08
2013-01-1560
The effect of equivalence ratio on the particulate size distribution (PSD) in a spark-ignited, direct-injected (SIDI) engine was investigated. A single-cylinder, four-stroke, spark-ignited direct-injection engine fueled with certification gasoline was used for the measurements. The engine was operated with early injection during the intake stroke. Equivalence ratio was swept over the range where stable combustion was achieved. Throughout this range combustion phasing was held constant. Particle size distributions were measured as a function of equivalence ratio. The data show the sensitivity of both engine-out particle number and particle size to global equivalence ratio. As equivalence ratio was increased a larger fraction of particles were due to agglomerates with diameters ≻ 100 nm. For decreasing equivalence ratio smaller particles dominate the distribution. The total particle number and mass increased non-linearly with increasing equivalence ratio.
Technical Paper

A Quasi-Dimensional NOx Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines

2013-04-08
2013-01-1311
A fundamentally based quasi-dimensional NOx emission model for spark ignition direct injection (SIDI) gasoline engines was developed. The NOx model consists of a chemical mechanism and three sub-models. The classical extended Zeldovich mechanism and N₂O pathway for NOx formation mechanism were employed as the chemical mechanism in the model. A characteristic time model for the radical species H, O and OH was incorporated to account for non-equilibrium of radical species during combustion. A model of homogeneity which correlates fundamental dimensionless numbers and mixing time was developed to model the air-fuel mixing and inhomogeneity of the charge. Since temperature has a dominant effect on NOx emission, a flame temperature correlation was developed to model the flame temperature during the combustion for NOx calculation. Measured NOx emission data from a single-cylinder SIDI research engine at different operating conditions was used to validate the NOx model.
Technical Paper

Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for a Lean Burn Spark Ignition Direct Injection (SIDI) Gasoline Engine

2013-04-08
2013-01-1572
A Three-Way Catalyst (TWC) model with global TWC kinetics for lean burn DISI engines were developed and validated. The model incorporates kinetics of hydrocarbons and carbon monoxide oxidations, NOx reduction, water-gas and steam reforming and oxygen storage. Ammonia (NH₃) and new nitrous oxide (N₂O) kinetics were added into the model to study NH₃ and N₂O formation in TWC systems. The model was validated over a wide range of engine operating conditions using various types of experimental data from a lean burn automotive SIDI engine. First, well-controlled time-resolved steady state data were used for calibration and initial model tests. In these steady state operations, the engine was switched between lean and rich conditions for NOx emission control. Then, the model was further validated using a large set of time-averaged steady state data. Temperature dependencies of NH₃ and N₂O kinetics in the TWC model were examined and well captured by the model.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

A Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

2012-04-16
2012-01-0349
Accelerated market penetration of plug-in electric vehicles (PEVs) is presently restricted by the high cost of batteries. Deployment of grid-connected energy storage, which could increase the reliability, efficiency, and cleanliness of the grid, is similarly inhibited by the cost of batteries. Research, development, and manufacturing are underway to reduce cost by lowering material costs, enhance process efficiencies, and increase production volumes. Another approach under consideration is to recover a fraction of the battery cost after the battery has been retired from vehicular service via reuse in other applications, where it may still have sufficient performance to meet the requirements of other energy-storage applications.
Technical Paper

Reduced Magnet Designs and Position Self-Sensing Control Methods of Flux-Intensifying Permanent Magnet Synchronous Machines

2012-04-16
2012-01-0345
This paper presents advanced and cost-reducing technologies of a motor drive system with reduced permanent magnets but without a position sensor. The key enabler is the integration of novel designs of flux-intensifying interior permanent magnet synchronous machines (FI-IPMSMs) and position self-sensing control technologies. In this paper, we focus on two advantages of FI-IPMSM over conventional flux-weakening interior permanent magnet synchronous machines (FW-IPMSMs). The first benefit is that thinner magnets are possible and there is less concern for demagnetization because of its significantly smaller flux-weakening current. This paper presents two design examples of FI-IPMSMs, one of which has not only smaller magnets but also similar power conversion capability. The second advantage is reduced saturation and cross-saturation effect, which leads to improved position self-sensing capability.
X