Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Vehicle AC System Durability and Compressor Warranty Concern Chance

2013-04-08
2013-01-1291
The majority of vehicle AC system warranty costs are a result of compressor replacement caused by excessive wear and seizure-related failures. In today's environment, compressor manufacturers can control manufacturing process well and maintain a stable product quality. Thus, compressor durability heavily relies on a durable AC system design. Both vehicle compressor suppliers have a variety of procedures and test methods to evaluate AC system and compressor durability. Often times, we still see very different compressor warranty return rates (one higher, the other lower) for the same compressor from the same production line in similar vehicle AC systems. In many cases, both AC systems passed vehicle and component durability tests. In addition, compressor manufacturing process quality was controlled well. The question remains why is there such different compressor warranty return rates?
Technical Paper

S/MA Resin Recovery System and Recycling in OEM Specification Foam / Covered Instrument Panels

2004-03-08
2004-01-1750
Several million pounds of S/MA glass reinforced resin has been successfully recovered from manufacturing offal and reject foamed / covered Instrument Panels (IP's) over the past ten years. ACI-WIPAG and Visteon recovered high quality S/MA resin, prepared blends with virgin resin and injection-molded IP substrates meeting OEM specifications. This “S/MA Resin Reclaim” process has been an economical and environmental success; minimized landfill volume, reduced landfill disposal costs, recovered a valuable resource, increased material utilization and reduced raw material costs. This paper reports on a new system and process to recover S/MA glass reinforced resin from manufacturing trim offal and reject IP's, blending and supplying OEM specification resin blends for molding instrument panel substrates. The system demonstrated economical recovery of an excellent quality “Reclaim” resin, blend consistency and uniformity for injection molding instrument panel substrates.
Technical Paper

Extensible and Upgradeable Vehicle Electrical, Electronic, and Software Architectures

2002-03-04
2002-01-0878
The rapid growth of electronic feature content within the vehicle continues to challenge the automotive industry. Customers want cutting edge consumer electronics features in a vehicle before the features are obsolete. However, automotive manufacturers continue to struggle with introducing new features into vehicles before they become obsolete to the customer. The ability for automotive manufacturers to seamlessly upgrade existing products with new and improved products continues to plague the automotive industry. Vehicles traditionally take 4 plus years to design and manufacture. Automotive manufacturers need to plan consumer electronics features early, but not actually integrate those into the vehicle until late in the design cycle, possibly on the production line. This would help facilitate providing the most recent features.
Technical Paper

Optimizing Distributed Systems for Automotive E/E Architectures

2000-11-01
2000-01-C083
The rapid growth of vehicle feature content continues to challenge automotive designers. The total vehicle feature content seriously impacts the manufacturing complexity of any single vehicle. Traditional strategies for introducing new features into high-content luxury vehicles before moving the feature into economy vehicles have been undermined by the fast moving consumer electronics field. The challenge for automotive OEM and Tier 1 suppliers is to optimize the vehicle architecture in order to provide more efficient means of introducing features expediently and efficiently. Therefore, any production vehicle's Electrical, Electronic, & Software (EES) architecture must successfully support modular sourcing, modular assembly, global manufacturing schemes, cost and weight issues.
X