Refine Your Search

Topic

Search Results

Technical Paper

Compressor Body Temperature and Lubrication

2013-04-08
2013-01-1501
The paper addresses compressor body temperature (crankcase) importance to the vehicle AC system long-term durability. Majority of OEM vehicle test evaluation is to see if AC system can pass compressor discharge temperature and discharge pressure targets. Most OEMs adopt 130°C max compressor discharge temperature and 2350 kpag head pressure as the target. From the field, although some of the compressor failure results from a high compression ratio, and compressor discharge temperature that are caused by the poor front end airflow, etc., high percentage compressor failed systems exhibit not too high compression ratio and compressor discharge temperature, but having the trace of high temperature in the shaft area, gasket area, etc. With introducing more and more variable swash plate compressor applications, OEMs start to see more and more compressor failures that are not related to a high compressor discharge temperature but the trace of high compressor body temperature.
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2012-04-16
2012-01-0482
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Production Solutions for Utilization of Both R1234yf and R134a in a Single Global Platform

2009-04-20
2009-01-0172
As global automobile manufacturers prepare for the phase-out of R134a in Europe, they must address the issue of using the new refrigerant for European sales only or launching the product worldwide. Several factors play into this decision, including cost, service, risk, customer satisfaction, capacity, efficiency, etc. This research effort addresses the minimal vehicle-level hardware differences necessary to provide a European solution of R1234yf while continuing to install R134a into vehicles for the rest of the world. It is anticipated that the same compressor, lubricant and condenser; most fluid transport lines; and in most cases the evaporator can be common between the two systems.
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

A Filter Seal Model for Point Mobility Prediction of Air Induction Systems

2006-04-03
2006-01-1209
Virtual design validation of an air induction system (AIS) requires a proper finite element (FE) assembly model for various simulation based design tasks. The effect of the urethane air filter seal within an AIS assembly, however, still poses a technical challenge to the modeling of structural dynamic behaviors of the AIS product. In this paper, a filter seal model and its modeling approach for AIS assemblies are introduced, by utilizing the feature finite elements and empiric test data. A bushing element is used to model the unique nonlinear stiffness and damping properties of the urethane seal, as a function of seal orientation, preloading, temperature and excitation frequency, which are quantified based on the test data and empiric formula. Point mobility is used to character dynamic behaviors of an AIS structure under given loadings, as a transfer function in frequency domain.
Technical Paper

Multibody Dynamic Simulation of Steering Gear Systems With Three-Dimensional Surface Contacts

2006-02-14
2006-01-1960
In an effort to understand steering systems performance and properties at the microscopic level, we developed Multibody simulations that include multiple three-dimensional gear surfaces that are in a dynamic state of contact and separation. These validated simulations capture the dynamics of high-speed impact of gears traveling small distances of 50 microns in less than 10 milliseconds. We exploited newly developed analytic, numeric, and computer tools to gain insight into steering gear forces, specifically, the mechanism behind the inception of mechanical knock in steering gear. The results provided a three dimensional geometric view of the sequence of events, in terms of gear surfaces in motion, their sudden contact, and subsequent force generation that lead to steering gear mechanical knock. First we briefly present results that show the sequence of events that lead to knock.
Technical Paper

Multivariate Statistical Methods for the Analysis of NVH Data

2005-05-16
2005-01-2518
The present work discusses the application of multivariate statistical methods for the analysis of NVH data. Unlike conventional statistical methods which generally consider single-value, or univariate data, multivariate methods enable the user to examine multiple response variables and their interactions simultaneously. This characteristic is particularly useful in the examination of NVH data, where multiple measurements are typically used to assess NVH performance. In this work, Principal Components Analysis (PCA) was used to examine the NVH data from a benchmarking study of hydraulic steering pumps. A total of twelve NVH measurements for each of 99 pump samples were taken. These measurements included steering pump orders and overall levels for vibration and sound pressure level at two microphone locations. Application of the PCA method made it possible to examine the entire set of data at once.
Technical Paper

Simple Application of DOE Methods to Reduce Whistle Noise in a HPAS Pump Relief Valve

2005-05-16
2005-01-2468
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and the improvement of a hydraulic steering pump noise, vibration, and harshness (NVH) performance in relief. DOE methods were applied to subjective ratings to examine the effect of several different factors, as well as the interactions between these factors on pump relief NVH. Specifically, the DOE was applied to the geometry of the cross ports on a hydraulic relief valve to improve “whistle” noise in the pump. Statistical methods were applied to determine which factors and interactions had a significant effect on pump whistle. These factors were used to produce a more robust cross port configuration reducing whistle noise. Lastly, the final configuration was experimentally verified on the test apparatus and subjectively confirmed in vehicle-level testing.
Technical Paper

Design Evaluations On IRS Axle System NVH Through Analytical Studies

2005-05-16
2005-01-2289
Axle whine is an important driveline NVH issue that originates in the hypoid gear sets due to transmitted error excitations. Improving gear quality to reduce the transmitted error has a cost penalty, as well as practical manufacturing limitations. On the other hand, axle system dynamics play a significant role in the system response to gear excitations and in transmissibility from gears to the structure. Analytical tools can be used to tune axle system dynamics in order to alleviate noise and vibration issues. Analytical results can be utilized to evaluate design alternatives, reduce the number of prototypes, thus to reduce product development time. However, analytical results need to be verified and correlated with test results. In this paper, dynamic behavior of a driveline system is investigated. The finite element model is validated at both component and system levels using frequency response functions and mode shapes.
Technical Paper

CAE Virtual Test of Air Intake Manifolds Using Coupled Vibration and Pressure Pulsation Loads

2005-04-11
2005-01-1071
A coupled vibration and pressure loading procedure has been developed to perform a CAE virtual test for engine air intake manifolds. The CAE virtual test simulates the same physical test configuration and environments, such as the base acceleration vibration excitation and pressure pulsation loads, as well as temperature conditions, for design validation (DV) test of air intake manifolds. The original vibration and pressure load data, measured with respect to the engine speed rpm, are first converted to their respective vibration and pressure power spectrum density (PSD) profiles in frequency domain, based on the duty cycle specification. The final accelerated vibration excitation and pressure PSD load profiles for design validation are derived based on the key life test (KLT) duration and reliability requirements, using the equivalent fatigue damage technique.
Technical Paper

Improved Hydraulic Power Steering Pump Design Using Computer Tools

2005-04-11
2005-01-1269
A hydraulic steering pump system will be considered in this report. The objective is to improve the design of a specific power steering pump using computational fluid dynamics (CFD) tools. The first part of this report deals with a pump oil seal leak. The thermal and fluid environments have been simulated. A variable fluid viscosity is used, showing a 15-20% increase in peak temperature. Potential improvements in product design have been suggested. The second part deals with using computer tools to reduce redundant testing. This includes use of parametric approach towards optimization. A rotating grid approach (basic moving mesh technique) is used.
Technical Paper

Robustness Considerations in the Design of a Stabilizer Bar System

2005-04-11
2005-01-1718
Modern automobiles utilize stabilizer bars to increase vehicle roll stiffness. Stabilizer bars are laterally mounted torsional springs which resist vertical displacement of the wheels relative to one another. A stabilizer bar is constructed in such a way that it will meet package constraints and fatigue requirements. In order to design a robust stabilizer bar, Taguchi's “Design of Experiment method” is used. The objective of this paper is to develop a robust stabilizer bar design that will maximize the fatigue life and the roll stiffness while minimizing weight. This study is based on results obtained by CAE analysis.
Technical Paper

Localized Nonlinear Model of Plastic Air Induction Systems for Virtual Design Validation Tests

2005-04-11
2005-01-1516
Plastic air induction system (AIS) has been widely used in vehicle powertrain applications for reduced weight, cost, and improved engine performance. Physical design validation (DV) tests of an AIS, as to meet durability and reliability requirements, are usually conducted by employing the frequency domain vibration tests, either sine sweep or random vibration excitations, with a temperature cycling range typically from -40°C to 120°C. It is well known that under high vibration loading and large temperature range, the plastic components of the AIS demonstrate much higher nonlinear response behaviors as compared with metal products. In order to implement a virtual test for plastic AIS products, a practical procedure to model a nonlinear system and to simulate the frequency response of the system, is crucial. The challenge is to model the plastic AIS assembly as a function of loads and temperatures, and to evaluate the dynamic response and fatigue life in frequency domain as well.
Technical Paper

A Dynamic Model of Automotive Air Conditioning Systems

2005-04-11
2005-01-1884
A dynamic computer model of automotive air conditioning systems was developed. The model uses simulation software for the coding of 1-D heat transfer, thermodynamics, fluid flow, and control valves. The same software is used to model 3-D solid dynamics associated with mechanical mechanisms of the compressor. The dynamics of the entire AC system is thus simulated within the same software environment. The results will show the models potential applications in component and system design, calibration and control.
Technical Paper

Multi-Target Modelling for Embedded Software Development for Automotive Applications

2004-03-08
2004-01-0269
Manual ‘porting” of source code is often required in order to “reuse” control software in different applications with different target hardware. This process is not cost effective. Maintaining multiple “versions” of the same software also causes problems. This paper describes a way in which multiple target source code can be generated from a single model. A custom data class is developed so that it can be used to define both signal and parameter data types necessary for data dictionary-driven models. This capability allows a single model to be used to generate code for multiple target hardware architectures. A software development process using a generic model to support multiple hardware targets is compared with the hand porting process (e.g. floating-point to/from fixed-point). Auto code generation from a sample multi-target feature model will be presented. The efficiency of the auto code will also be discussed.
Technical Paper

R134a Heat Pump for Improved Passenger Comfort

2004-03-08
2004-01-1379
As powertrains continue to get more efficient, less waste heat is available for warming the passenger compartment. Although several supplemental heating devices are currently on the market, including electric heaters, viscous heaters, and fuel operated heaters, they each have shortcomings related to cost, capacity, efficiency, and/or environmental concerns[1]. In an attempt to provide superior time-to-comfort in a cost, weight, package efficient, and environmentally friendly manner, an R134a heat pump (HP) system was developed. Several technical issues were overcome while developing this system. Production vehicles have been retrofitted to incorporate the R134a heat pump system and tested in a climatic wind tunnel. Test results for a -18°C warm-up test were compared to baseline data, showing significant improvements in average discharge air and breath level temperatures.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

Virtual Key Life Tests of Instrument Panels for Product Development

2004-03-08
2004-01-1482
Visteon has developed a CAE procedure to qualify instrument panel (IP) products under the vehicle key life test environments, by employing a set of CAE simulation and durability techniques. The virtual key life test method simulates the same structural configuration and the proving ground road loads as in the physical test. A representative dynamic road load profile model is constructed based on the vehicle proving ground field data. The dynamic stress simulation is realized by employing the finite element transient analysis. The durability evaluation is based on the dynamic stress results and the material fatigue properties of each component. The procedure has helped the IP engineering team to identify and correct potential durability problems at earlier design stage without a prototype. It has shown that the CAE virtual key life test procedure provides a way to speed up IP product development, to minimize prototypes and costs.
X