Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

On-Road Monitoring of Low Speed Pre-Ignition

2018-09-10
2018-01-1676
To meet increasingly stringent emissions and fuel economy regulations, many Original Equipment Manufacturers (OEMs) have recently developed and deployed small, high power density engines. Turbocharging, coupled with gasoline direct injection (GDI) has enabled a rapid engine downsizing trend. While these turbocharged GDI (TGDI) engines have indeed allowed for better fuel economy in many light duty vehicles, TGDI technology has also led to some unintended consequences. The most notable of these is an abnormal combustion phenomenon known as low speed pre-ignition (LSPI). LSPI is an uncontrolled combustion event that takes place prior to spark ignition, often resulting in knock, and has been known to cause catastrophic engine damage. LSPI propensity depends on a number of factors including engine design, calibration, fuel properties and engine oil formulation. Several engine tests have been developed within the industry to better understand the phenomenon of LSPI.
X