Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

Injection Orifice Shape: Effects on Spray Characteristics and Heat-Release Rate in a Large-Size Single-Cylinder Diesel Engine

1999-10-25
1999-01-3490
A series of experimental studies of diesel spray and combustion characteristics was carried out using circular, elliptic and step orifices. The experiment was performed on a 3-litre single-cylinder engine with optical access. In the engine tests, an elliptic-orifice nozzle with an aspect ratio of approximately 2:1, and a step-orifice nozzle were compared with circular-orifice nozzles. All orifices had sharp-edged inlets. The nozzles were tested at injection pressures extending from 300 to 1300 bar. The nozzles were evaluated in respect of initial spray tip velocity, penetration, spray cone angle, spray width, intermittency and heat-release. Substantial differences were observed in the spray characteristics: At an injection pressure of 300 bar, the spray width increased twice as fast in the minor axis plane of the elliptic orifice and step orifice than the circular orifices.
X