Refine Your Search

Topic

Search Results

Technical Paper

Hybrid Electric Vehicle Architecture Selection for EcoCAR 3 Competition

2015-04-14
2015-01-1228
This paper presents the work performed by the Wayne State University (WSU) EcoCAR 3 student design competition team in its preparation for the hybrid electric vehicle architecture selection process. This process is recognized as one of the most pivotal steps in the EcoCAR 3 competition. With a key lesson learned from participation in EcoCAR 2 on “truly learning how to learn,” the team held additional training sessions on architecture selection tools and exercises with the goal of improving both fundamental and procedural skills. The work conducted represents a combination of the architecture feasibility study and final selection process in terms of content and procedure, respectively. At the end of this study the team was able to identify four potentially viable hybrid powertrain architectures, and thoroughly analyze the performance and packaging feasibility of various component options.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Journal Article

On-Board Fuel Identification using Artificial Neural Networks

2014-04-01
2014-01-1345
On-board fuel identification is important to ensure engine safe operation, similar power output, fuel economy and emissions levels when different fuels are used. Real-time detection of physical and chemical properties of the fuel requires the development of identifying techniques based on a simple, non-intrusive sensor. The measured crankshaft speed signal is already available on series engine and can be utilized to estimate at least one of the essential combustion parameters such as peak pressure and its location, rate of cylinder pressure rise and start of combustion, which are an indicative of the ignition properties of the fuel. Using a dynamic model of the crankshaft numerous methods have been previously developed to identify the fuel type but all with limited applications in terms of number of cylinders and computational resources for real time control.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Journal Article

Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

2014-04-01
2014-01-1376
This paper presents the results of an experimental investigation on a single cylinder engine to validate a two-component JP-8 surrogate. The two-component surrogate was chosen based on a previous investigation where the key properties, such as DCN, volatility, density, and lower heating value, of the surrogate were matched with those of the target JP-8. The matching of the auto-ignition, combustion, and emission characteristics of the surrogate with JP-8 was investigated in an actual diesel engine environment. The engine tests for the validation of the surrogate were conducted at an engine speed of 1500 rpm, a load of 3 bar, and different injection timings. The results for the cylinder gas pressure, ignition delay period, rate of heat release, and the CO, HC, and NOx emissions showed a good match between the surrogate and the target JP-8. However, the engine-out particulate matter for the surrogate was lower than that for the JP-8 at all tested conditions.
Technical Paper

Investigation of Ignition Energy with Visualization on a Spark Ignited Engine powered by CNG

2014-04-01
2014-01-1331
The need for using alternative fuel sources continues to grow as industry looks towards enhancing energy security and lowering emissions levels. In order to capture the potential of these megatrends, this study focuses on the relationship between ignition energy, thermal efficiency, and combustion stability of a 0.5 L single cylinder engine powered by compressed natural gas (CNG) at steady state operation. The goal of the experiment was to increase ignition energy at fixed lambda values to look for gains in thermal efficiency. Secondly, a lambda sweep was performed with criteria of maintaining a 4% COVIMEP by increasing the ignition energy until an appropriate threshold for stable combustion was found. The engine performance was measured with a combustion analysis system (CAS), to understand the effects of thermal efficiency and combustion stability (COVIMEP). Emissions of the engine were measured with an FTIR.
Technical Paper

Combustion Ionization for Resonance Detection and Mitigation Using Pilot Injection in a Diesel Engine

2014-04-01
2014-01-1360
Advanced injection systems play a major role in reducing engine out emission in modern diesel engines. One interesting technology is the common rail injection system which is becoming more vital in controlling emission due to its flexibility in injection pressure, timing and number of injection events. Many studies have showed the advantages of using such injection parameters to meet the strict emission and improve engine performance. A glow plug/ ion current sensor was used to measure ionization produced during the combustion process. The ion current signal contains many valuable information including combustion phasing, duration and combustion resonance. In prior publications, it was demonstrated the capability of the ion current to control the combustion phasing and the ability to detect combustion resonance. Therefore, the experimental testing was conducted under controlled combustion phasing using the feedback from the ion current sensor.
Technical Paper

Experimental Study for the Effect of Fuel Properties on the Ion Current, Combustion, and Emission in a High Speed Diesel Engine

2014-04-01
2014-01-1263
This paper presents experimental study on the impact of using fuels with different physical and chemical properties in a diesel engine. Research is driven towards finding an alternative or extender to the conventional diesel fuel for compression ignition engines. Such alternative fuels have wide ranges of physical and chemical properties which are not suitable for CI engines. Advanced injection systems and control strategies in modern diesel engines permit operation to be extended to a wider range of fuels. Therefore, experimental investigation to understand the effects of different fuels on engine performance, combustion, and emissions are necessary. The study covers the effect of using different fuels such as JP-8 and Sasol-IPK on a modern automotive diesel engine. The engine used in this study is a 2.0L, 4 cylinders, direct injection diesel engine fitted with piezo-driven injectors.
Technical Paper

The Development of an Electronic Control Unit for a High Pressure Common Rail Diesel/Natural Gas Dual-Fuel Engine

2014-04-01
2014-01-1168
Natural gas has been considered to be one of the most promising alternative fuels due to its lower NOx and soot emissions, less carbon footprint as well as attractive price. Furthermore, higher octane number makes it suitable for high compression ratio application compared with other gaseous fuels. For better economical and lower emissions, a turbocharged, four strokes, direct injection, high pressure common rail diesel engine has been converted into a diesel/natural gas dual-fuel engine. For dual-fuel engine operation, natural gas as the main fuel is sequentially injected into intake manifold, and a very small amount of diesel is directly injected into cylinder as the ignition source. In this paper, a dual-fuel electronic control unit (ECU) based on the PowerPC 32-bit microprocessor was developed. It cooperates with the original diesel ECU to control the fuel injection of the diesel/natural gas dual-fuel engine.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Interactions of Multi-hole DI Sprays with Charge Motion and their Implications to Flexible Valve-trained Engine Performance

2011-08-30
2011-01-1883
Advanced valvetrain coupled with Direct Injection (DI) provides an opportunity to simultaneous reduction of fuel consumption and emissions. Because of their robustness and cost performance, multi-hole injectors are being adopted as gasoline DI fuel injectors. Ethanol and ethanol-gasoline blends synergistically improve the performance of a turbo-charged DI gasoline engine, especially in down-sized, down-sped and variable-valvetrain engine architecture. This paper presents Mie-scattering spray imaging results taken with an Optical Accessible Engine (OAE). OAE offers dynamic and realistic in-cylinder charge motion with direct imaging capability, and the interaction with the ethanol spray with the intake air is studied. Two types of cams which are designed for Early Intake Valve Close (EIVC) and Later Intake Valve Close (LIVC) are tested, and the effect of variable valve profile and deactivation of one of the intake valves are discussed.
Technical Paper

Effect of Using Biodiesel (B-20) and Combustion Phasing on Combustion and Emissions in a HSDI Diesel Engine

2011-04-12
2011-01-1203
The use of biodiesel and its blends with ultra low sulfur diesel (ULSD) is gaining significant importance due to its ability to burn in conventional diesel engines with minor modifications. However the chemical and physical properties of biodiesel are different compared to the conventional ULSD. These differences directly impact the injection, spray formation, auto ignition and combustion processes which in turn affect the engine-out emissions. To understand the effect of fueling with B-20, tests were conducted on a single cylinder 0.42L direct injection research diesel engine. The engine is equipped with a common rail injection system, variable EGR and swirl control systems and was operated at a constant engine speed of 1500 rpm and 3 bar IMEP to simulated turbocharged conditions. Injection timing and duration were adjusted with B-20 at different locations of peak premixed combustions (LPPC) and two different swirl ratios to achieve 3 bar IMEP.
Technical Paper

Charge Motion Benefits of Valve Deactivation to Reduce Fuel Consumption and Emissions in a GDi, VVA Engine

2011-04-12
2011-01-1221
Requirements for reduced fuel consumption with simultaneous reductions in regulated emissions require more efficient operation of Spark Ignited (SI) engines. An advanced valvetrain coupled with Gasoline Direct injection (GDi) provide an opportunity to simultaneously reduce fuel consumption and emissions. Work on a flex fuel GDi engine has identified significant potential to reduce throttling by using Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) strategies to control knock and load. High loads were problematic when operating on gasoline for particulate emissions, and low loads were not able to fully minimize throttling due to poor charge motion for the EIVC strategy. The use of valve deactivation was successful at reducing high load particulate emissions without a significant airflow penalty below 3000 RPM. Valve deactivation did increase the knocking tendency for knock limited fuels, due to increased heat transfer that increased charge temperature.
Technical Paper

Characterization of Multi-hole Spray and Mixing of Ethanol and Gasoline Fuels under DI Engine Conditions

2010-10-25
2010-01-2151
Because of their robustness and cost performance, multi-hole gasoline injectors are being adopted as the direct injection (DI) fuel injector of choice as vehicle manufacturers look for ways to reduce fuel consumption without sacrificing power and emission performance. To realize the full benefits of direct injection, the resulting spray needs to be well targeted, atomized, and appropriately mixed with charge air for the desirable fuel vapor concentration distributions in the combustion chamber. Ethanol and ethanol-gasoline blends synergistically improve the turbo-charged DI gasoline performance, especially in down-sized, down-sped and variable-valve-train engine architecture. This paper presents the spray imaging results from two multi-hole DI gasoline injectors with different design, fueled with pure ethanol (E100) or gasoline (E0), under homogeneous and stratified-charge conditions that represent typical engine operating points.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Technical Paper

Effect of Biodiesel and its Blends on Particulate Emissions from HSDI Diesel Engine

2010-04-12
2010-01-0798
The effect of biodiesel on the Particulate emissions is gaining significant attention particularly with the drive for the use of alternative fuels. The particulate matter (PM), especially having a diameter less than 50 nm called the Nanoparticles or Nucleation mode particles (NMPs), has been raising concerns about its effect on human health. To better understand the effect of biodiesel and its blends on particulate emissions, steady state tests were conducted on a small-bore single-cylinder high-speed direct-injection research diesel engine. The engine was fueled with Ultra-Low Sulfur Diesel (ULSD or B-00), a blend of 20% soy-derived biodiesel and 80% ULSD on volumetric basis (B-20), B-40, B-60, B-80 and 100% soy-derived biodiesel (B-100), equipped with a common rail injection system, EGR and swirl control systems at a load of 5 bar IMEP and constant engine speed of 1500 rpm.
Technical Paper

Effects of B20 Fuel and Catalyst Entrance Section Length on the Performance of UREA SCR in a Light-Duty Diesel Engine

2010-04-12
2010-01-1173
The current study focused on the effects B20 fuel (20% soybean-based biodiesel) and SCR entrance shapes on a light-duty, high-speed, 2.8L common-rail 4-cylinder diesel engine, at different exhaust temperatures. The results indicate that B20 has less deNOX efficiency at low temperature than ULSD, and that N₂O emission need to be characterized as well as NH₃ slip. If a mixer and enough mixing length are used, longer divergence section does not improve the deNOX efficiency significantly under the speed ranges tested.
Technical Paper

Temperature Effect on Performance of a Commercial Fuel Filter for Biodiesel Blends with ULSD

2010-04-12
2010-01-0473
Biodiesel offers a potentially viable alternative fuel source for diesel automotive applications. However, biodiesel may present problems at colder temperatures due to the crystallization of fatty acid methyl esters and precipitation of other components, such as unreacted triglycerides and sterol glycosides in biodiesel. At lower temperatures, the fuel gels until it solidifies in the fuel lines, clogging the fuel filter, and shutting down the engine. A laboratory-based continuous loop fuel system was utilized to determine the flow properties at low temperatures of biodiesel in B100, B20, and B10 blends for soybean and choice white grease (pig fat) biodiesel fuel. The continuous loop fuel delivery system was designed to be similar to those that can be found in engines and vehicles currently in use, and provided a mechanical pump or an electric pump as a means to simulate systems found in the different types of vehicles.
Technical Paper

Performance, Durability, and Stability of a Power Generator Fueled with ULSD, S-8, JP-8, and Biodiesel

2010-04-12
2010-01-0636
The feasibility of using ultra low sulfur diesel (ULSD), synthetic paraffinic kerosene (S-8), military grade jet fuel (JP-8) and commercial B20 blend (20% v biodiesel in ULSD) in a power generator equipped with a compression ignition (CI) engine was investigated according to the MIL-STD-705C military specifications for engine-driven generator sets. Several properties of these fuels such as cetane number, lubricity, viscosity, cold flow properties, heat of combustion, distillation temperatures, and flash point, were evaluated. All fuels were tested for 240 hours at a stationary load of 30 kW (60% of full load) with no alteration to the engine calibrations. The brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), frequency, and power of the generator using S-8, JP-8 and B20 were compared with the baseline fuel ULSD.
X