Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Potential of a Hydrogen Fueled Opposed-Piston Four Stroke (OP4S) Engine

2023-04-11
2023-01-0408
The aim of this study is to develop a pathway towards Hydrogen combustoin on an opposed-piston four stroke engine (OP4S) by using 1D simulation code from Gamma Technologies. By its configuration, the OP4S engine has significant thermal efficiency benefits versus conventional ICE. The benefit of the OP4S is reduced heat losses due to elimination of the cylinder head, which increase the brake thermal efficiency. A hydrogen-fueled (H2) opposed-piston four stroke (OP4S) engine was modeled using GTPower to determine the potential on performance, thermal efficiency and emissions targets. The 1D model was first validated on E10 gasoline using experimental data and was used to explore changes to fuel type in NG and H2, fueling location (TPI and DI), fuel mixture strength (stoichiometric and lean), for an optimized plenum volume and turbocharger selection.
Journal Article

Exploration of Vehicle Body Countermeasures Subjected to High Energy Loading

2023-04-11
2023-01-0003
Enhanced protection against high speed crashes requires more aggressive passive safety countermeasures as compared to what are provided in vehicle structures today. Apart from such collision-related scenarios, high energy explosions, accidentally caused or otherwise, require superior energy-absorbing capability of vehicle body subsystems. A case in point is a passenger vehicle subjected to an underbody blast emanating shock wave energy of military standards. In the current study, assessment of the behavior of a “hollow” countermeasure in the form of a depressed steel false floor panel attached with spot-welds along flanges to a typical predominantly flat floor panel of a car is initially carried out with an explicit LS-DYNA solver. This is followed up with the evaluation of PU (polyurethane) foam-filled and liquid-filled false floor countermeasures. In all cases, a charge is detonated under the false floor subjecting it to a high-energy shock pressure loading.
Technical Paper

Development of Multiple Injection Strategy for Gasoline Compression Ignition High Performance and Low Emissions in a Light Duty Engine

2022-03-29
2022-01-0457
The increase in regulatory demand to reduce CO2 emissions resulted in a focus on the development of novel combustion modes such as gasoline compression ignition (GCI). It has been shown by others that GCI can improve the overall engine efficiency while achieving soot and NOx emissions targets. In comparison with diesel fuel, gasoline has a higher volatility and has more resistance to autoignition, therefore, it has a longer ignition delay time which facilitates better mixing of the air-fuel charge before ignition. In this study, a GCI combustion system has been tested using a 2.2L compression ignition engine as part of a US Department of Energy funded project. For this purpose, a multiple injection strategy was developed to improve the pressure rise rates and soot emission levels for the same engine out NOx emissions.
Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Journal Article

Prediction of Crash Performance of Adhesively-Bonded Vehicle Front Rails

2022-03-29
2022-01-0870
Adhesive bonding provides a versatile strategy for joining metallic as well as non-metallic substrates, and also offers the functionality for joining dissimilar materials. In the design of unibody vehicles for NVH (Noise, Vibration and Harshness) performance, adhesive bonding of sheet metal parts along flanges can provide enhanced stiffening of body-in-white (BIW) leading to superior vibration resistance at low frequencies and improved acoustics due to sealing of openings between flanges. However, due to the brittle nature of adhesives, they remain susceptible to failure under impact loading conditions. The viability of structural adhesives as a sole or predominant mode of joining stamped sheet metal panels into closed hollow sections such as hat-sections thus remains suspect and requires further investigation.
Technical Paper

Identification of Low-Frequency/Low SNR Automobile Noise Sources

2021-08-31
2021-01-1062
This paper presents experimental investigations of determining and analyzing low-frequency, low-SNR (Signal to Noise Ratio) noise sources of an automobile by using a new technology known as Sound Viewer. Such a task is typically very difficult to do especially at low or even negative SNR. The underlying principles behind the Sound Viewer technology consists of a passive SODAR (Sonic Detection And Ranging) and HELS (Helmholtz Equation Least Squares) method. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, etc.
Technical Paper

Chassis Lightweight Hole Placement with Weldline Evaluation

2021-01-07
2020-01-5217
Vehicle weight-driven design comes amid rising higher fuel efficiency standards and must meet the criteria—pass proving ground (PG) test events that are equivalent to customer usage. Computer-aided engineering (CAE) fatigue analysis for PG is a successful push behind to digitally simulate vehicle durability performance with high fidelity. The need for vehicle weight reduction often arises in the vehicle development final phases when CAE methods, time, and tangible cost-effective opportunities are limited or nonexistent. In this research, a new CAE methodology is developed to identify opportunities for lightweight hole placement in the chassis structure and deliver a cost-effective lightweight solution with no additional impact on fatigue life. The successful application of this new methodology exhibits the effectiveness of the truck frame, which is the key chassis structure to support the body, suspension, and powertrain.
Technical Paper

Step by Step Conversion of ICE Motorcycle to a BEV Configuration

2020-04-14
2020-01-1436
With the mass movement toward electrification and renewable technologies, the scope of innovation of electrification has gone beyond the automotive industry into areas such as electric motorcycle applications. This paper provides a discussion of the methodology and complexities of converting an internal combustion motorcycle to an electric motorcycle. In developing this methodology, performance goals including, speed limits, range, weight, charge times, as well as riding styles will be examined and discussed. Based on the goals of this paper, parts capable of reaching the performance targets are selected accordingly. Documentation of the build process will be presented along with the constraints, pitfalls, and difficulties associated with the process of the project. The step-by-step process that is developed can be used as a guideline for future build and should be used as necessary.
Technical Paper

Smart Spark Plug for Proper Combustion Timing in Gasoline Engines and Detection of Misfire and Knock

2020-04-14
2020-01-0790
Internal combustion engines are required to achieve production goals of better fuel economy, improved fuel economy and reduced emissions in order to meet the current and future stringent standards. To achieve these goals, it is essential to control the combustion process using an in-cylinder combustion sensor and a system that produces a feedback signal to the ECU. This paper presents a system based on combustion ionization that includes a newly developed smart spark plug capable of sensing the whole combustion process. A unique feature of the smart spark plug system is its ability to sense the early stages of combustion and produce a complete ion current signal that accurately identifies and can be used for the control of the start of combustion.
Technical Paper

Strategies to Gain the Loss in Power in a Military Diesel Engine Using JP-8 Instead of ULSD

2020-04-14
2020-01-0804
The Department of Defense (DOD) has adopted the use of JP-8 under the “single battlefield fuel” policy. Fuel properties of JP-8 which are different from ULSD include cetane number, density, heating value and compressibility (Bulk modulus). While JP8 has advantages compared to ULSD, related to storage, combustion and lower soot emissions, its use cause a drop in the peak power in some military diesel engines. The engines that has loss in power use the Hydraulically actuated Electronic Unit Injection (HEUI) fuel system. The paper explains in details the operation of HEUI including fuel delivery into the injector and its compression to the high injection pressure before its delivery in the combustion chamber. The effect of fuel compressibility on the volume of the fuel that is injected into the combustion chamber is explained in details.
Technical Paper

Application of Multivariate Control Chart Techniques to Identifying Nonconforming Pallets in Automotive Assembly Plants

2020-04-14
2020-01-0477
The Hotelling multivariate control chart and the sample generalized variance |S| are used to monitor the mean and dispersion of vehicle build vision data including the pallet information to identify the non-conforming pallets that are used in body shops of FCA US LLC assembly plants. An iterative procedure and the Gaussian mixture model (GMM) are used to rank the non-conforming or bad pallets in the order of severity. The Hotelling multivariate T2 test statistic along with Mason-Tracy-Young (MYT) signal decomposition method is used to identify the features that are affected by the bad pallets. These algorithms were implemented in the Advanced Pallet Analysis module of the FCA US software Body Shop Analysis Toolbox (BSAT). The identified bad pallets are visualized in a scatter plot with a different color for each of the top bad pallets. The run chart of an affected feature confirms the bad pallet by highlighting data points from the bad pallet.
Technical Paper

Investigating Collaborative Robot Gripper Configurations for Simple Fabric Pick and Place Tasks

2019-04-02
2019-01-0699
Fiber composite materials are widely used in many industrial applications - specially in automotive, aviation and consumer goods. Introducing light-weighting material solutions to reduce vehicle mass is driving innovative materials research activities as polymer composites offer high specific stiffness and strength compared to contemporary engineering materials. However, there are issues related to high production volume, automation strategies and handling methods. The state of the art for the production of these light-weight flexible textile or composite fiber products is setting up multi-stage manual operations for hand layups. Material handling of flexible textile/fiber components is a process bottleneck. Consequently, the long term research goal is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. Collaborative robots allow for interactive human-machine tasks to be conducted.
Technical Paper

Investigation of Fuel Condensation Processes under Non-reacting Conditions in an Optically-Accessible Engine

2019-04-02
2019-01-0197
Engine experiments have revealed the importance of fuel condensation on the emission characteristics of low temperature combustion. However, direct in-cylinder experimental evidence has not been reported in the literature. In this paper, the in-cylinder condensation processes observed in optically accessible engine experiments are first illustrated. The observed condensation processes are then simulated using state-of-the-art multidimensional engine CFD simulations with a phase transition model that incorporates a well-validated phase equilibrium numerical solver, in which a thermodynamically consistent phase equilibrium analysis is applied to determine when mixtures become unstable and a new phase is formed. The model utilizes fundamental thermodynamics principles to judge the occurrence of phase separation or combination by minimizing the system Gibbs free energy.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

One-Dimensional Modelling and Analysis of Thermal Barrier Coatings for Reduction of Cooling Loads in Military Vehicles

2018-04-03
2018-01-1112
There is a general interest in the reduction of cooling loads in military vehicles. To that end thermal barrier coatings (TBCs) are being studied for their potential as insulators, particularly for military engines. The effectiveness of TBCs is largely dependent on their thermal properties, however insulating effects can also be modified by applying different coating thickness. Convection from in-cylinder surfaces can also be affected by manipulation of surface structure. Although most prior studies have examined TBCs as a means of increasing efficiency, military vehicle design is primarily concerned with the reduction of cylinder heat transfer to allow downsizing of cooling systems. A 1-D transient conjugate heat transfer model was developed to provide insight into the effects of different TBC designs and material selection on cooling loads. Results identify low thermal conductivity and low thermal capacitance as key parameters in achieving optimal heat loss reduction.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Journal Article

RCCI Combustion Regime Transitions in a Single-Cylinder Optical Engine and a Multi-Cylinder Metal Engine

2017-09-04
2017-24-0088
Reactivity Controlled Compression Ignition (RCCI) is an approach to increase engine efficiency and lower engine-out emissions by using in-cylinder stratification of fuels with differing reactivity (i.e., autoignition characteristics) to control combustion phasing. Stratification can be altered by varying the injection timing of the high-reactivity fuel, causing transitions across multiple regimes of combustion. When injection is sufficiently early, combustion approaches a highly-premixed autoignition regime, and when it is sufficiently late it approaches more mixing-controlled, diesel-like conditions. Engine performance, emissions, and control authority over combustion phasing with injection timing are most favorable in between, within the RCCI regime.
Technical Paper

Crack Failure Mode Analysis for Cam-Housing Rocker Arm and Pin

2017-03-28
2017-01-0358
During the extensive testing under NATO and Commercial Standards, crack is observed in camshaft housing to initiate from the eccentric shaft bore and go toward the hold down bolt hole. Hence lab test proposal is originated to induce similar failure in a controlled method and then to compare new design alternatives. CAE analysis follows the same set up as the lab test to duplicate failure mode in stress analysis and fatigue analysis with duty cycle loads, and then figures out two strategies on how to improve the design, including geometry change and material change. In geometry wise, four new design iterations are evaluated for comparison. In material wise, one new material for camshaft housing and five manufacturing effect parameters for pin and rocker arm are compared, including ground, machined, machined and decarburization, casting, as well as casting and nitride. With those comparisons, all manufacturing parameters are compared based on effectiveness to affect the fatigue life.
Technical Paper

Experimental Validation of Jet Fuel Surrogates in an Optical Engine

2017-03-28
2017-01-0262
Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
X