Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Performance Parity Study of Electrified Class 8 Semi Trucks with Diesel Counterparts

2024-04-09
2024-01-2164
It is recognized that the heavier vehicles, the more emissions, thus the more imperative to electrify. In this study, long haul heavy-duty trucks are referred as HDTs, which are recognized as one of the hard-to-electrify vehicle segments, though the automotive industry has gained trending advantages of electrifying both light-duty cars and SUVs. Since big rigs such as Class 8 HDTs have significant road-block challenges for electrification due to the demanding long-hour work cycles in all weathers, this study focuses on quantifying those electrification challenges by taking advantage of the public data of Class 8 tractors & trailers. Tesla Semi is the research target though its vehicle spec data is sorted out with fragmentary information in the public domain. The key task is to analyze the battery capacity requirements due to environmental temperature and inherent aging over the lifespan.
Technical Paper

Tackling Limited Labeled Field Data Challenges for State of Health Estimation of Lithium-Ion Batteries by Advanced Semi-Supervised Regression

2024-04-09
2024-01-2200
Accurate estimation of battery state of health (SOH) has become indispensable in ensuring the predictive maintenance and safety of electric vehicles (EVs). While supervised machine learning excels in laboratory settings with adequate SOH labels, field-based SOH data collection for supervised learning is hindered by EVs' complex conditions and prohibitive data collection costs. To overcome this challenge, a battery SOH estimation method based on semi-supervised regression is proposed and validated using field data in this paper. Initially, the Ampere integral formula is employed to calculate SOH labels from charging data, and the error of labeled SOH is reduced by the open-circuit voltage correction strategy. The calculation error of the SOH label is confirmed to be less than 1.2%, as validated by the full-charge test of the battery packs.
Technical Paper

Impact Strength Analysis of Body Structure Based on a MBD-FEA Combined Method

2024-04-09
2024-01-2243
In the field of automobile development, sufficient structure strength is the most basic objective to be accomplished. Typically, method of strength analysis could be divided into static strength and dynamic strength. Analysis of static strength constitutes the major part of the development, but the supplement of dynamic strength is also dispensable to assure structural integrity. This paper presents a methodology about analyzing the impact strength of body structure based on a Multi-body Dynamics (MBD) and Finite Element Analysis (FEA) combined method. Firstly, the full vehicle MBD model consists of Curved Regular Grid (CRG) road model, Flexible Ring Tire (FTire) model and dynamic deflection-force bump stop model was built in Adams/Car. Next, Damage Initiation and Evolution Model (DIEM) failure criteria was adopted to describe material failure behavior.
Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

Hierarchical Decentralized Model Predictive Control for Multi-Stack Fuel Cell Vehicles Using Driving Cycle Data

2023-04-11
2023-01-0178
The energy management strategy, commonly known as the EMS, is an essential component of fuel cell cars (FCVs). The majority of current research is concentrated on centralized emergency management systems (Cen-EMSs), but it does not provide sufficient flexibility (plug-and-play) or robustness. Regarding this matter, a hierarchical decentralized energy management system (Dec-EMS) that is based on a model predictive control (MPC) technique is offered for a modular FCV powertrain that is comprised of two parallel proton exchange membrane fuel cells (PEMFC) and an energy storage system. Gain scheduling makes the proposed Dec-EMS controller more effective in terms of its performance. The hierarchical decentralized control approach is assessed within the framework of a driving scenario that is representative of real-world conditions. According to the numerical result, the decentralized emergency management system (Dec-EMS) proposal provides superior performance than the centralized approach.
Technical Paper

Intersection Signal Control Based on Speed Guidance and Reinforcement Learning

2023-04-11
2023-01-0721
As a crucial part of the intelligent transportation system, traffic signal control will realize the boundary control of the traffic area, it will also lead to delays and excessive fuel consumption when the vehicle is driving at the intersection. To tackle this challenge, this research provides an optimized control framework based on reinforcement learning method and speed guidance strategy for the connected vehicle network. Prior to entering an intersection, vehicles are focused on in a specific speed guidance area, and important factors like uniform speed, acceleration, deceleration, and parking are optimized. Conclusion, derived from deep reinforcement learning algorithm, the summation of the length of the vehicle’s queue in front of the signal light and the sum of the number of brakes are used as the reward function, and the vehicle information at the intersection is collected in real time through the road detector on the road network.
Technical Paper

Crack Detection and Section Quality Optimization of Self-Piercing Riveting

2023-04-11
2023-01-0938
The use of lightweight materials is one of the important means to reduce the quality of the vehicle, which involves the connection of dissimilar materials, such as the combination of lightweight materials and traditional steel materials. The riveting quality of self-piercing riveting (SPR) technology will directly affect the safety and durability of automobiles. Therefore, in the initial joint development process, the quality of self-piercing riveting should be inspected and classified to meet safety standards. Based on this, this paper divides the self-piercing riveting quality into riveting appearance quality and riveting section quality. Aiming at the appearance quality of riveting, the generation of cracks on the lower surface of riveting will seriously affect the riveting strength. The existing method of identifying cracks on the lower surface of riveting based on artificial vision has strong subjectivity, low efficiency and cannot be applied on a large scale.
Technical Paper

Potential of a Hydrogen Fueled Opposed-Piston Four Stroke (OP4S) Engine

2023-04-11
2023-01-0408
The aim of this study is to develop a pathway towards Hydrogen combustoin on an opposed-piston four stroke engine (OP4S) by using 1D simulation code from Gamma Technologies. By its configuration, the OP4S engine has significant thermal efficiency benefits versus conventional ICE. The benefit of the OP4S is reduced heat losses due to elimination of the cylinder head, which increase the brake thermal efficiency. A hydrogen-fueled (H2) opposed-piston four stroke (OP4S) engine was modeled using GTPower to determine the potential on performance, thermal efficiency and emissions targets. The 1D model was first validated on E10 gasoline using experimental data and was used to explore changes to fuel type in NG and H2, fueling location (TPI and DI), fuel mixture strength (stoichiometric and lean), for an optimized plenum volume and turbocharger selection.
Journal Article

Exploration of Vehicle Body Countermeasures Subjected to High Energy Loading

2023-04-11
2023-01-0003
Enhanced protection against high speed crashes requires more aggressive passive safety countermeasures as compared to what are provided in vehicle structures today. Apart from such collision-related scenarios, high energy explosions, accidentally caused or otherwise, require superior energy-absorbing capability of vehicle body subsystems. A case in point is a passenger vehicle subjected to an underbody blast emanating shock wave energy of military standards. In the current study, assessment of the behavior of a “hollow” countermeasure in the form of a depressed steel false floor panel attached with spot-welds along flanges to a typical predominantly flat floor panel of a car is initially carried out with an explicit LS-DYNA solver. This is followed up with the evaluation of PU (polyurethane) foam-filled and liquid-filled false floor countermeasures. In all cases, a charge is detonated under the false floor subjecting it to a high-energy shock pressure loading.
Technical Paper

Load Simulation of the Impact Road under Durability and Misuse Conditions

2023-04-11
2023-01-0775
Road load data is an essential input to evaluate vehicle durability and strength performances. Typically, load case of pothole impact constitutes the major part in the development of structural durability. Meanwhile, misuse conditions like driving over a curb are also indispensable scenarios to complement impact strength of vehicle structures. This paper presents a methodology of establishing Multi-body Dynamics (MBD) full vehicle model in Adams/Car to acquire the road load data for use in durability and strength analysis. Furthermore, load level between durability and misuse conditions of the same Impact road was also investigated to explore the impact due to different driving maneuvers.
Journal Article

A New Safety-Oriented Multi-State Joint Estimation Framework for High-Power Electric Flying Car Batteries

2023-04-11
2023-01-0511
Accurate and robust knowledge of battery internal states and parameters is a prerequisite for the safe, efficient, and reliable operation of electric flying cars. Battery states such as state of charge (SOC), state of temperature (SOT), and state of power (SOP) are of particular interest for urban air mobility (UAM) applications. This article proposes a new safety-oriented multi-state estimation framework for collaboratively updating the SOC, SOT, and SOP of lithium-ion batteries under typical UAM mission profiles that explicitly incorporates the underlying interplay among these three states. Specifically, the SOC estimation is performed by combining an adaptive extended Kalman filter with a timely calibrated battery electrical model, and the key temperature information, including the volume-averaged temperature, highest temperature, and maximum temperature difference, is estimated using an adaptive Kalman filter based on a simplified 2-D spatially-resolved thermal model.
Research Report

Automated Vehicles, the Driving Brain, and Artificial Intelligence

2022-11-16
EPR2022027
Automated driving is considered a key technology for reducing traffic accidents, improving road utilization, and enhancing transportation economy and thus has received extensive attention from academia and industry in recent years. Although recent improvements in artificial intelligence are beginning to be integrated into vehicles, current AD technology is still far from matching or exceeding the level of human driving ability. The key technologies that need to be developed include achieving a deep understanding and cognition of traffic scenarios and highly intelligent decision-making. Automated Vehicles, the Driving Brain, and Artificial Intelligenceaddresses brain-inspired driving and learning from the human brain's cognitive, thinking, reasoning, and memory abilities. This report presents a few unaddressed issues related to brain-inspired driving, including the cognitive mechanism, architecture implementation, scenario cognition, policy learning, testing, and validation.
Technical Paper

Hierarchical Eco-Driving Control of Connected Hybrid Electric Vehicles Based on Dynamic Traffic Flow Prediction

2022-09-16
2022-24-0021
Due to traffic congestion and environmental pollution, connected automated vehicle (CAV) technologies based on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure communication (V2I) have gained increasing attention from both academia and industry. Connected hybrid electric vehicles (CHEVs) offer great opportunities to reduce vehicular operating costs and emissions. However, in complex traffic scenarios, high-quality real-time energy management of CHEVs remains a technical challenge. To address the challenge, this paper proposes a hierarchical eco-driving strategy that consists of speed planning and energy management layers. At the upper layer, by leveraging the real-time traffic data provided by vehicle-to-everything (V2X) communication, dynamic traffic constraints are predicted by the traffic flow predictor developed based on the Hankel dynamic mode decomposition algorithm (H-DMD).
Technical Paper

Development of Multiple Injection Strategy for Gasoline Compression Ignition High Performance and Low Emissions in a Light Duty Engine

2022-03-29
2022-01-0457
The increase in regulatory demand to reduce CO2 emissions resulted in a focus on the development of novel combustion modes such as gasoline compression ignition (GCI). It has been shown by others that GCI can improve the overall engine efficiency while achieving soot and NOx emissions targets. In comparison with diesel fuel, gasoline has a higher volatility and has more resistance to autoignition, therefore, it has a longer ignition delay time which facilitates better mixing of the air-fuel charge before ignition. In this study, a GCI combustion system has been tested using a 2.2L compression ignition engine as part of a US Department of Energy funded project. For this purpose, a multiple injection strategy was developed to improve the pressure rise rates and soot emission levels for the same engine out NOx emissions.
Technical Paper

HD-Map Based Ground Truth to Test Automated Vehicles

2022-03-29
2022-01-0097
Over the past decade there has been significant development in Automated Driving (AD) with continuous evolution towards higher levels of automation. Higher levels of autonomy increase the vehicle Dynamic Driving Task (DDT) responsibility under certain predefined Operational Design Domains (in SAE level 3, 4) to unlimited ODD (in SAE level 5). The AD system should not only be sophisticated enough to be operable at any given condition but also be reliable and safe. Hence, there is a need for Automated Vehicles (AV) to undergo extensive open road testing to traverse a wide variety of roadway features and challenging real-world scenarios. There is a serious need for accurate Ground Truth (GT) to locate the various roadway features which helps in evaluating the perception performance of the AV at any given condition. The results from open road testing provide a feedback loop to achieve a mature AD system.
Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Technical Paper

Analyzing the Impact of Electric Vehicles on Power Losses and Voltage Profile in Power Distribution Systems

2022-03-29
2022-01-0748
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB.
Journal Article

Prediction of Crash Performance of Adhesively-Bonded Vehicle Front Rails

2022-03-29
2022-01-0870
Adhesive bonding provides a versatile strategy for joining metallic as well as non-metallic substrates, and also offers the functionality for joining dissimilar materials. In the design of unibody vehicles for NVH (Noise, Vibration and Harshness) performance, adhesive bonding of sheet metal parts along flanges can provide enhanced stiffening of body-in-white (BIW) leading to superior vibration resistance at low frequencies and improved acoustics due to sealing of openings between flanges. However, due to the brittle nature of adhesives, they remain susceptible to failure under impact loading conditions. The viability of structural adhesives as a sole or predominant mode of joining stamped sheet metal panels into closed hollow sections such as hat-sections thus remains suspect and requires further investigation.
Technical Paper

Predictive Energy Management for Dual Motor-Driven Electric Vehicles

2022-02-14
2022-01-7006
Developing pure electric powertrains have become an important way to reduce reliance on crude oil in recent years. This paper concerns energy management of dual motor-driven electric vehicles. In order to obtain a predictive energy management strategy with good performance in computation and energy efficiency, we propose a hybrid algorithm that combines model predictive control (MPC) and convex programming to minimize electrical energy use in real time control. First, few changes are occurred in original component models in order to convert the original optimal control problem into convex programming problem. Then convex optimization algorithm is used in the prediction horizon to optimize torque allocation between two electric motors with different size. To verify the effectiveness of the hybrid algorithm, a real city driving cycle is simulated. Furthermore, different predictive horizons are performed to illustrate the robustness and time efficiency of the proposed method.
Technical Paper

The Evaluation of the Driving Capability for Drivers Based on Vehicle States and Fuzzy-ANP Model

2022-01-31
2022-01-7000
In partly autonomous driving such as level 2 or level 3 automatic driving from SAE international classification, the switching of the driving right between the human driver and the machine plays an important role in the driving process of vehicle [1]. In this paper, the data collected from vehicle states and the driving behavior of drivers is completed via a simulator and self-report questionnaires. A fuzzy analytic network process (Fuzzy-ANP) model is developed to evaluate the driving capability of the drivers in real time from vehicle states due to its direct inherent link to the change of the driving state of drivers Moreover, in this model, the idea of group decision and multi-index fusion is adopted. The questionnaire is required to identify the experimental results from the simulator. The results show that the proposed Fuzzy-ANP model can evaluate the driving capability of the participants in real time accurately.
X