Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

2019-10-22
2019-01-2599
The control and design optimization of a Free Piston Engine Generator (FPEG) has been found to be difficult as each independent variable changes the piston dynamics with respect to time. These dynamics, in turn, alter the generator and engine response to other governing variables. As a result, the FPEG system requires an energy balance control algorithm such that the cumulative energy delivered by the engine is equal to the cumulative energy taken by the generator for stable operation. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the generator. In a conventional crankshaft engine, this energy balance control is similar to the use of a governor and a flywheel to control the rotational speed. In general, if the generator consumes more energy in a cycle than the engine provides, the system moves towards a stall.
Journal Article

Sensitivity Analysis and Control Methodology for Linear Engine Alternator

2019-04-02
2019-01-0230
Linear engine alternator (LEA) design optimization traditionally has been difficult because each independent variable alters the motion with respect to time, and therefore alters the engine and alternator response to other governing variables. An analogy is drawn to a conventional engine with a very light flywheel, where the rotational speed effectively is not constant. However, when springs are used in conjunction with an LEA, the motion becomes more consistent and more sinusoidal with increasing spring stiffness. This avoids some attractive features, such as variable compression ratio HCCI operation, but aids in reducing cycle-to-cycle variation for conventional combustion modes. To understand the cycle-to-cycle variations, we have developed a comprehensive model of an LEA with a 1kW target power in MATLAB®/Simulink, and an LEA corresponding to that model has been operated in the laboratory.
X