Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The AMS02 TVTB Test Design and Predictions

The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure charged cosmic rays spectra and high energy photons on board of the International Space Station (ISS). The large acceptance (0.5 m2sr), the long mission duration (3 years) and the state of the art particle identification techniques will allow AMS to provide the most sensitive search up to date for the existence of anti matter nuclei and for the origin of dark matter. AMS02 now is in its final integration phase at CERN. To verify the functional performance of the detectors and of the key subsystems of the Thermal Control System under vacuum condition and to validate the thermal mathematical model of AMS02 a system level thermo-vacuum test will be performed in the Large Space Simulator (LSS) of ESA at ESTEC (the Netherlands).
Technical Paper

Alpha Magnetic Spectrometer (AMS-02) Thermal Control Verification Philosophy

This paper reports on the approach followed for the TCS verification of the payload AMS-02 (Alpha Magnetic Spectrometer), aiming at the qualification of the entire system, in steps, for the space environment. AMS-02 is a state-of-the-art experiment composed by a stack of seven different particle detectors, each of them having its own electronics and control equipments. It will be installed on the International Space Station Starboard segment S3 of the main Truss, and will be a 6500 kg payload, with a power consumption of 2000 W. The verification philosophy is driven by the need to qualify the flight hardware and by the necessary confirmation and correlation of the thermal mathematical models, based on experimental data. The hardware used on AMS-02 is derived from the state-of-the-art ground based detectors for high energy physics, hence not yet proven for operations in vacuum and in extreme thermal environment.