Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Heat Transfer Analysis for Exhaust Waste Heat Recovery System Based on Mg2Si1-xSnx Thermoelectric Materials

2016-10-17
2016-01-2161
In this research, the Mg2Si1-xSnx thermoelectric material is used in the exhaust temperature difference power-generating system, and the material's heat transfer characteristic and power-generating characteristic were analyzed. Firstly, steady heat transfer model from vehicle exhaust to cooling water was established. Then the impact of Sn/Si ratio to the thermoelectric characteristic parameter was analyzed. Finally, considering the influence of varying thermal conductivity to the heat transfer process along the material's heat transfer direction, when the cold end temperature of thermoelectric materials was controlled by cooling water respectively boiling at 343K and 373K, the thermoelectric conversion efficiency and power output of Mg2Si1-xSnx thermoelectric materials with different x value were evaluated based on simulation calculation.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

Study of Energy Recovery System Based on Organic Rankine Cycle for Hydraulic Retarder

2016-04-05
2016-01-0239
The hydraulic retarder is an auxiliary braking device used in heavy duty vehicle. It generates braking forceby liquid damping effect and makes inertial energy into thermal energy of the transmission medium when the vehicleis in thedownhill. The traditional thermal management system of the hydraulic retarder dissipates the heat of transmission medium out of the vehicle directly, which causes a big waste of energy, meanwhilethe thermal management system components need to consume engine power. This study applies organic Rankine cycle (ORC)cooling system to meet the high power cooling requirements of the hydraulic retarder and recover waste heat energy from the transmission medium at the same time and then supply energy to the thermal management system, which could save the parasitic power of the engine and improve the comprehensive energy utilization ratio of the vehicle.
Technical Paper

Low Pumping Loss Hydraulic Retarder with Helium Circulation System

2015-09-29
2015-01-2801
The hydraulic retarder, an important auxiliary brake, has been widely used in heavy vehicles. Under the non-braking working condition, the air resistance torque in the working chamber, which is formed by the rotor of hydraulic retarder's stirring the air, causes pumping loss. This research designs a new type of hydraulic retarder, whose helium is charged into working chamber through closed loop gas system under non-braking working condition, can reduce the parasitic power loss of transmission system. First, under non-braking working condition, the resistance characteristics are analyzed on the base of hydraulic retarder pumping model; then, considering some parameters, such as the volume of chambers and the initial gas pressure, the working chamber gas charge model is established, and the transient gas charge characteristics are also analyzed under non-braking working condition.
X