Refine Your Search

Topic

Search Results

Technical Paper

New CEC Gasoline Direct Injection Fuels Test – Comparison of Deposits and Spray Performance from New and Used injectors.

2019-11-21
2019-28-2392
The use of deposit control additives in European market gasoline is well documented for maintaining high levels of engine cleanliness and subsequent sustained fuel and emissions performance. Co-ordinating European Council (CEC) industry fuels tests have played a crucial role in helping to drive market relevant, effective and low-cost deposit control additives into European market fuels. Until now, there has not been a Gasoline Direct Injection engine test available to fuel marketers in any market globally. However, a new CEC engine test is currently being developed to address that gap. Based on an in-house VW injector coking test, it shows promise for becoming a useful tool with which to develop and measure the performance of deposit control additives. A key requirement of industry tests should be to replicate issues seen in consumer vehicles, thereby providing a platform for relevant solutions.
Technical Paper

Energy Consumption Optimization for the Electric Vehicle Air Conditioning Using the Condensate Water

2019-04-02
2019-01-0148
In summer, the relatively low temperature water condenses in the evaporator when the vehicle air-conditioning (AC) is running. At present, the vehicle AC condensate water without well utilization is directly wasted. The condenser’s thermal transfer performance has a great influence on the AC performance, and to increase the convective heat transfer coefficient (CHTC) is the key to its design. In this paper, a method of using atomized condensate water (CW) to enhance the condenser’s thermal transfer performance is proposed, which can make the most of the CW's cold energy. It achieves the reuse of CW and increases the condenser’s CHTC. First, the CW flow calculation model in the evaporator and the calculation model of the condenser enhanced thermal transfer using atomized CW are both set up. The influence of the evaporation degree of atomized CW particles in the air on the enhancement effect is comprehensively considered.
Technical Paper

A Novel Three Steps Composited Parameter Matching Method of an Electromagnetic Regenerative Suspension System

2019-04-02
2019-01-0173
The electromagnetic regenerative suspension has attracted much attention recently due to its potential to improve ride comfort and handling stability, at the same time recover kinetic energy which is typically dissipated in traditional shock absorbers. The key components of a ball-screw regenerative suspension system are a motor, a ball screw and a nut. For this kind of regenerative suspension, its damping character is determined by the motor's torque-speed capacity, which is different from the damping character of the traditional shock absorber. Therefore, it is necessary to establish a systematic approach for the parameter matching of ball-screw regenerative suspension, so that the damping character provided by it can ensure ride comfort and handling stability. In this paper, a 2-DOF quarter vehicle simulation model with regenerative suspension is constructed. The effects of the inertia force on ride comfort and handling stability are analyzed.
Technical Paper

Attitude Control of the Vehicle with Six In-Wheel Drive and Adaptive Hydro Pneumatic Suspensions

2019-04-02
2019-01-0456
The ability of actively adjusting attitude provides a great advantage for those vehicles used in special environments such as off-road environment with extreme terrains and obstacles. It can improve vehicles’ stability and performance. This paper proposes an attitude control system for realizing the active attitude adjustment and vehicle motion control in the same time. The study is based on a vehicle with six wheel independent drive and six independent suspensions (6WIDIS), which is a kind of unmanned vehicle with six in-wheel drives and six independent hydro pneumatic suspensions. With the hydro- pneumatic suspensions, the vehicle’s attitude can be actively adjusted. This paper develops a centralized- distributed control strategy with attitude information obtained by multi-sensor fusion, which can coordinate the complex relationship among the six wheels and suspensions. The attitude control system consists of three parts.
Technical Paper

A Topological Map-Based Path Coordination Strategy for Autonomous Parking

2019-04-02
2019-01-0691
This paper proposed a path coordination strategy for autonomous parking based on independently designed parking lot topological map. The strategy merges two types of paths at the three stages of path planning, to determinate mode switching timing between low-speed automated driving and automated parking. Firstly, based on the principle that parking spaces should be parallel or vertical to a corresponding path, a topological parking lot map is designed by using the point cloud data collected by LiDAR sensor. This map is consist of road node coordinates, adjacent matrix and parking space information. Secondly, the direction and lateral distance of the parking space to the last node of global path are used to decide parking type and direction at parking planning stage. Finally, the parking space node is used to connect global path and parking path at path coordination stage.
Technical Paper

Fuel Economy Regulations and Technology Roadmaps of China and the US: Comparison and Outlook

2018-09-10
2018-01-1826
In order to address the increasing energy and environmental concerns, China and the US both launched the fuel economy regulations and aim to push the development of technology. In this study, the stringency of CAFC and CAFE regulations and the technology development of two countries are compared. Besides, the optimal technology pathways of America and automakers for the compliance of CAFE regulations are calculated based on the modified VOLPE model, and the results are used as reference for China. The results indicate that the annual regulation improvement rates of China is higher than America and the AIR of China 2015-2020 regulation reaches 6.2% and is the most stringent phase in 10 years from 2015 to 2025. From the perspective of technology, there are still big gaps between China and the US in the applications of advanced fuel saving technologies.
Technical Paper

Effect of Single and Double-Deck Pre-Chamber Designs to the Combustion Characteristics of Premixed CH4 /Air

2018-09-10
2018-01-1688
An experiment was carried out to investigate the effect of single and double-deck pre-chamber on the combustion characteristics of premixed CH4/air in a constant volume vessel using schlieren method. A special design was proposed for the visualization of the pre-chamber. Combustion with different initial temperatures (300 K, 400 K, 500 K) were observed at stoichiometric ratio to lean-burn limit. Although single-deck pre-chamber has advantages over double-deck pre-chamber in both initial flame development duration and main combustion duration, the latter could extend the lean-burn limit by up to 0.3 and promote the stability of ignition. It is also found that extensive distribution of active species in main chamber before ignition can accelerate speed of flame propagation enormously.
Journal Article

Energy Harvesting in Tire: State-of-the-Art and Challenges

2018-04-03
2018-01-1119
Although energy harvesting systems are extensively used in different fields, studies on the application of energy harvesters embedded in tires for vehicle control are rare and mostly focus on solving power supply problems of tire pressure sensors. Sensors are traditionally powered by an embedded battery, which must be replaced periodically because of its limited energy storage. Heightened interest in vehicle safety is expected to drive increased design and manufacture of in-tire sensors, which in turn, translates to rising demand for power generation in tires. These challenges emphasize the need to investigate the substitution of batteries and in-tire energy harvesting systems. Current in-tire energy harvesting methods involve piezoelectric, electromagnetic, and electrostatic power generation, whose energy sources include tire vibrations, deformations, and rotations. Piezoelectric harvesters are generally compact but operate for short durations.
Technical Paper

The Measures of Improving Power Generation Stability for Harvesting Automobile Exhaust Energy

2018-04-03
2018-01-1367
The automobile exhaust energy can be recovered by the thermoelectric module generator(TEG). Owing to the complex urban traffic, the exhaust gas’s temperature fluctuations are resulted, which means the unstable hot-end temperature of the TEG. By installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, it is possible to appropriately reduce the temperature fluctuation, but there is still a fluctuation of the TEG’s power output. Then by adding voltage filter circuit (VFC) after the TEG, the power output stability can be improved. This research uses SHCM and VFC to improve the stability of the exhaust gas generation. Firstly, the three-dimensional heat transfer model of the exhaust pipe thermoelectric power generation system is established. The heat capacity materials with low thermal resistance and high heat capacity were selected as the research object based on previous research.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Energy-Harvesting Potential and Vehicle Dynamics Conflict Analysis under Harmonic and Random Road Excitations

2018-04-03
2018-01-0568
Energy has the worldwide concern since the World War. Recently, the energy harvesting technology has got more attraction in different fields and applications. Hence, in a world where energy becomes rare and expensive, even the small quantities are worth to be harvested where it can be exploited in different applications. Vehicle suspension is one of the vibration power dissipation sources in which the undesired vibration is dissipated into heat waste. Accordingly, the principal motivation of this study is exploitation the conflict between the potentially harvested power and vehicle dynamics in automotive suspension system induced by road irregularity. Therefore, in terms of RMS conflict diagrams, the conflict between the potential power and vehicle dynamics are sufficiently and comprehensively defined considering a vehicle speed of 20 m/s.
Technical Paper

The engaging process model of sleeve and teeth ring with a precise, continuous and nonlinear damping impact model in mechanical transmissions

2017-10-08
2017-01-2443
During the engaging process of sleeve and teeth ring in mechanical transmissions, their rotational speed and position differences cause multiple engaging ways and trajectories, and casual impacts between them will delay the engaging process and cause a long power off time for a gear shift. In order to reveal the engaging mechanism of the sleeve and the teeth ring, it is essential to build a high-fidelity model to cover all of their engaging ways and capture their speed changes for an impact. In this work, our contribution is that their impact process is modeled as a precise, continuous and nonlinear damping model, and then a hybrid automaton model is built to connect the system dynamics in different mechanical coupling relationships.
Technical Paper

Development and Test of ESC Controller with Driver-In-the-Loop Platform

2017-09-23
2017-01-1993
This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Technical Paper

Driving Fatigue Detection based on Blink Frequency and Eyes Movement

2017-03-28
2017-01-1443
The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

Architecture of iBus: A Self-Driving Bus for Public Roads

2017-03-28
2017-01-0067
Safety of buses is crucial because of the large proportion of the public transportation sector they constitute. To improve bus safety levels, especially to avoid driver error, which is a key factor in traffic accidents, we designed and implemented an intelligent bus called iBus. A robust system architecture is crucial to iBus. Thus, in this paper, a novel self-driving system architecture with improved robustness, such as to failure of hardware (including sensors and controllers), is proposed. Unlike other self-driving vehicles that operate either in manual driving mode or in self-driving mode, iBus offers a dual-control mode. More specifically, an online hot standby mechanism is incorporated to enhance the reliability of the control system, and a software monitor is implemented to ensure that all software modules function appropriately. The results of real-world road tests conducted to validate the feasibility of the overall system confirm that iBus is reliable and robust.
X