Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Theoretical Study on Spray Design for Small-Bore Diesel Engine

2016-04-05
2016-01-0740
1 Recently, demand for small-bore compact vehicle engines has been increasing from the standpoint of further reducing CO2 emissions. The generalization and formulation of combustion processes, including those related to emissions formation, based on a certain similarity of physical phenomena regardless of engine size, would be extremely beneficial for the unification of development processes for various sizes of engines. The objective of this study is to clarify what constraints are necessary for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Technical Paper

Universal Diesel Engine Simulator (UniDES): 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion

2008-04-14
2008-01-0843
We have developed a novel engine cycle simulation program (UniDES: universal diesel engine simulator) to reproduce the diesel combustion process over a wide range of engine operating parameters, such as the amount of injected fuel, the injection timing, and the EGR ratio. The approach described in this paper employs a zoning model, where the in-cylinder region is divided into up to five zones. We also applied a probability density function (PDF) concept to each zone to consider the effect of spatial non-homogeneities, such as local equivalence ratios and temperature, on the combustion characteristics. We linked this program to the commonly used commercial GT-Power® software (UniDES+GT). As a result, we were able to reproduce transient engine behavior very accurately.
Technical Paper

Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability

2006-04-03
2006-01-0028
A concept of dual-fuel, Premixed Compression Ignition (PCI) combustion controlled by two fuels with different ignitability has been developed to achieve drastically low NOx and smoke emissions. In this system, isooctane, which was used to represent high-octane gasoline, was supplied from an intake port and diesel fuel was injected directly into an engine cylinder at early timing as ignition trigger. It was found that the ignition timing of this PCI combustion can be controlled by changing the ratio of amounts of injected two fuels and combustion proceeds very mildly by making spatial stratifications of ignitability in the cylinder even without EGR, as preventing the whole mixture from igniting simultaneously. The operable range of load, where NOx and smoke were less than 10ppm and 0.1 FSN, respectively, was extended up to 1.2MPa of IMEP using an intake air boosting system together with dual fueling.
X