Refine Your Search

Topic

Search Results

Standard

Ground-Plane Microphone Configuration for Propeller-Driven Light-Aircraft Noise Measurement

2020-03-13
WIP
ARP4055A
The scope of this ARP embraces the description of a configuration for a ground-plane microphone installation that may be used to determine sound pressure levels equivalent to those which would have been measured in an acoustic freefield at the microphone location. The one-third - octave-band center-frequency range over which equivalent freefield sound pressure levels may be obtained is from as low as 50 Hz to at least as high as 10,000 Hz. The specific application of the measurement technique described in this ARP is the determination of the equivalent freefield sound pressure levels of the noise produced by propeller-driven light aircraft, in flight, for sound incidence angles within 30 degrees of the normal to the ground. For larger angles to the normal, additional adjustments may be necessary which are outside the scope of this ARP.
Standard

Measurement of Far Field Noise from Gas Turbine Engines During Static Operation

2020-03-13
WIP
ARP1846B
Recommendations presented in this document are intended primarily for the acquisition of far-field noise data. The test engine is to be appropriately configured and operated so that the sound pressure levels obtained are consistent with the specific objectives of the test. The principal output of the data reduction system is one-third octave band sound pressure levels. However, when appropriate, data may be recorded for purposes of broader or narrower bandwidth analysis.
Standard

Practical Methods to Obtain Free-Field Sound Pressure Levels From Acoustical Measurements Over Ground Surfaces

2020-03-13
WIP
AIR1672C
Acquisition of free-field data is of practical significance in the field of aeronautical acoustics. The need for free-field data includes (but is not restricted to) the following: comparison of acoustical data obtained from the same engine under various measurement conditions; comparison of the results obtained from models with those from an engine on a test stand; comparison of noise measurements made on the same engine under static and in-flight conditions; design of test facilities; standardization of techniques for 'in situ' acoustical measurements; spectral decomposition to isolate the contribution of different sources to the total noise; and prediction of aircraft noise on the basis of methods which, generally, provide free-field data. There is an increasing tendency to test full-scale engine components and scale models in anechoic test facilities that provide free-field conditions.
Standard

Application of Pure-Tone Atmospheric Absorption Losses to One-Third Octave-Band Data

2013-08-10
CURRENT
ARP5534
This document presents a practical method for calculating atmospheric absorption for wide-band sounds analyzed with one-third octave-band filters, called the SAE Method. The SAE Method utilizes pure-tone attenuation algorithms originally published in ISO 9613-1 and ANSI S1.26-1995 to calculate path-length attenuation at mid-band frequencies. The equations introduced in this standard transform the pure-tone, mid-band attenuation to one-third octave-band attenuation. The purpose of this guidance document is to extend the useful attenuation range of the Approximate Method outlined in ANSI S1.26-1995, and to replace ARP866A. Calculation of sound attenuation caused by mechanisms other than atmospheric absorption such as divergence, refraction, scattering due to turbulence, ground reflections, or non-linear propagation effects, is outside the scope of this document.
Standard

Quantities for Description of the Acoustical Environment of the Interior of Aircraft

2012-08-16
CURRENT
ARP4245A
This Aerospace Recommended Practice (ARP) defines quantities that may be used to describe various attributes of the sound field in the interior of aircraft. For a particular aircraft, or for a specific situation in a particular aircraft, it may not be necessary to utilize all the quantities included here to provide an adequate description of an aircraft's interior acoustical environment.
Standard

Measurement of Rotorcraft Interior Sound Pressure Levels

2012-08-16
CURRENT
ARP1964A
Satisfactory measurements of noise in personnel-occupied rotorcraft cabins may require test techniques different from those prescribed for other types of aircraft (ARP1323) because rotorcraft operate under significantly different flight conditions. Recommendations of this ARP apply to the recording of acoustical data on magnetic tape and the subsequent processing and analysis of the recorded data.
Standard

Procedure for the Calculation of Aircraft Emissions

2009-07-27
CURRENT
AIR5715
This AIR describes procedures for calculating emissions resulting from the main engines of commercial jet and turboprop aircraft through all modes of operation for all segments of a flight. Piston engine aircraft emissions are not included in this AIR. Some information about piston engine aircraft emissions can be found in FOCA 2007. The principal purpose of the procedures is to assist model developers in calculating aircraft emissions in a consistent and accurate manner that can be used to address various environmental assessments including those related to policy decisions and regulatory requirements.
Standard

Measurement of Far Field Noise from Gas Turbine Engines During Static Operation

2008-03-05
CURRENT
ARP1846A
Recommendations presented in this document are intended primarily for the acquisition of far-field noise data. The test engine is to be appropriately configured and operated so that the sound pressure levels obtained are consistent with the specific objectives of the test. The principal output of the data reduction system is one-third octave band sound pressure levels. However, when appropriate, data may be recorded for purposes of broader or narrower bandwidth analysis.
Standard

Method for Predicting Lateral Attenuation of Airplane Noise

2006-04-20
CURRENT
AIR5662
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption.
Standard

MEASUREMENT OF ROTORCRAFT INTERIOR SOUND PRESSURE LEVELS

1993-05-01
HISTORICAL
ARP1964
Satisfactory measurements of noise in personnel-occupied rotorcraft cabins may require test techniques different from those prescribed for other types of aircraft (ARP1323) because rotorcraft operate under significantly different flight conditions. Recommendations of this ARP apply to the recording of acoustical data on magnetic tape and the subsequent processing and analysis of the recorded data.
Standard

QUANTITIES FOR DESCRIPTION OF THE ACOUSTICAL ENVIRONMENT OF THE INTERIOR OF AIRCRAFT

1991-03-15
HISTORICAL
ARP4245
This Aerospace Recommended Practice (ARP) defines quantities that may be used to describe various attributes of the sound field in the interior of aircraft. For a particular aircraft, or for a specific situation in a particular aircraft, it may not be necessary to utilize all the quantities included here to provide an adequate description of an aircraft's interior acoustical environment.
Standard

TYPE MEASUREMENTS OF AIRPLANE INTERIOR SOUND PRESSURE LEVELS DURING CRUISE

1990-08-01
HISTORICAL
ARP1323A
The primary measurement procedure recommended in this ARP includes the recording of sound pressure signals in the interior of an airplane during steady state cruise conditions with analysis after the flight into octave band (or one-third octave band) sound pressure levels.
Standard

MEASUREMENT OF FAR FIELD NOISE FROM GAS TURBINE ENGINES DURING STATIC OPERATION

1990-02-19
HISTORICAL
ARP1846
Recommendations presented in this document are intended primarily for the acquisition of far-field acoustical data. The test engine is to be appropriately configured and operated so that the acoustical signals generated are consistent with the specific objectives of the test. The principal output of the data reduction system is one-third octave band sound pressure levels. However, broader or narrower bandwidth analysis of the recorded data may also be accomplished when appropriate. Although not specifically intended to apply to special purpose engine noise testing (for example, tests involving unique instrumentation or procedures to identify specific noise sources), some of the practices described herein may be appropriate for such testing. Specification of reference conditions is outside the scope of this document although procedures to adjust data to a reference condition are described in 7.2.4.
Standard

Ground-Plane Microphone Configuration for Propeller-Driven Light-Aircraft Noise Measurement

1988-01-01
CURRENT
ARP4055
The scope of this ARP embraces the description of a configuration for a ground-plane microphone installation that may be used to determine sound pressure levels equivalent to those which would have been measured in an acoustic freefield at the microphone location. The one-third - octave-band center-frequency range over which equivalent freefield sound pressure levels may be obtained is from as low as 50 Hz to at least as high as 10,000 Hz. The specific application of the measurement technique described in this ARP is the determination of the equivalent freefield sound pressure levels of the noise produced by propeller-driven light aircraft, in flight, for sound incidence angles within 30 degrees of the normal to the ground. For larger angles to the normal, additional adjustments may be necessary which are outside the scope of this ARP.
X