Refine Your Search

Search Results

Viewing 1 to 13 of 13
Standard

Landing Gear System Development Plan

2023-05-31
WIP
ARP1598D
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial/military, fixed wing, and rotary wing air vehicles.
Standard

A Guide for the Damaging Effects of Tire and Wheel Failures

2022-07-06
CURRENT
AIR5699A
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Standard

Runway Condition Monitoring Systems

2022-04-13
WIP
AIR6697
This report will document Runway Condition Monitoring systems that provide information intended to reduce or eliminate aircraft runway excursions or overruns that may occur as a result of poor runway conditions.
Standard

Overview of Aircraft Landing Gear Shimmy Analysis Methods

2021-06-10
CURRENT
AIR6280
This SAE Aerospace Information Report (AIR) provides an overview of the tire properties, strut properties, damper properties, and other landing gear mechanical properties that contribute to shimmy stability and are required for shimmy analysis. A variety of analysis techniques and assumptions are presented.
Standard

Landing Gear Based Weight and Balance Systems

2019-04-18
WIP
AIR6941
This document outlines historical systems which have used the landing gear as a sensor or installation point for full aircraft weight and balance systems. A number of systems have been developed, installed, certified, and placed in service but few systems remain in regular use. The document will capture the history of these systems, reasons (where known) for their withdrawal from service, and lessons learned.
Standard

RECOMMENDED PRACTICE FOR MEASUREMENT OF STATIC MECHANICAL STIFFNESS PROPERTIES OF AIRCRAFT TIRES

1997-01-01
HISTORICAL
AIR1380A
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
X