Refine Your Search

Topic

Search Results

Standard

Landing Gear Structural Health Monitoring

2019-05-23
CURRENT
AIR6168A
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber (servicing), opportunities for corrosion detection, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. Landing gear tire condition and tire pressure monitoring are detailed in ARP6225, AIR4830, and ARP6137, respectively. Aircraft Brake Temperature Monitoring Systems (BTMS) are detailed in AS1145.
Standard

Landing Gear Based Weight and Balance Systems

2019-04-18
WIP
AIR6941
This document outlines historical systems which have used the landing gear as a sensor or installation point for full aircraft weight and balance systems. A number of systems have been developed, installed, certified, and placed in service but few systems remain in regular use. The document will capture the history of these systems, reasons (where known) for their withdrawal from service, and lessons learned.
Standard

A Guide for the Damaging Effects of Tire and Wheel Failures

2018-04-19
WIP
AIR5699A
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Standard

Effects of Extremely Cold Temperature on Landing Gear Operation

2016-03-15
WIP
AIR6411
Provide information and guidance for landing gear operation in cold temperature environment. Covers all operational aspects on ground and in flight. Includes effects on: tires, wheels, brakes, shock strut, seals, and actuation.
Standard

Landing Gear (Engine Off) Taxi System

2015-12-27
CURRENT
AIR6246
This SAE Aerospace Information Report (AIR) will review new landing gear (engine off) taxi system technologies currently being developed by various companies and describe the basic design concepts and potential benefits and issues. This AIR will identify the associated systems that could be affected by this new technology. The document will review basic design and operational requirements, failure modes and identify system certification requirements that may need to be addressed. The technology is evolving as this paper is being written and the data present is currently up to date as of 2015.
Standard

Catalog of Landing Gear Systems and Suppliers

2015-12-27
CURRENT
AIR5631A
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following commercial aircraft types; wide body jet airliners, narrow body jet airliners, and turboprop/commuter aircraft and the following military aircraft types; fighter, bomber, cargo, attack, surveillance, tanker and helicopter categories. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems. Future revisions of this document will add aircraft as they enter into service.
Standard

Overview of Aircraft Shimmy Analysis Methods

2013-10-21
WIP
AIR6280
This Aerospace Information Report will summarize several existing aircraft landing gear shimmy analysis techniques and provide guidance on the synthesis and testing of tire properties, strut properties, and other landing gear mechanical properties that support the various shimmy analysis methods. This AIR is applicable to large and small fixed wing and rotary wing aircraft for military or civilian use.
Standard

Landing Gear System Development Plan

2013-04-01
CURRENT
ARP1598B
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial, military, fixed wing and rotary wing air vehicles.
Standard

Aerospace Landing Gear - FAA Regulatory History - Airplane Wheels, Tires, and Brakes

2012-10-15
CURRENT
AIR5697A
This SAE Aerospace Information Report (AIR) contains regulatory and guidance information related to airplane wheels, tires, and brakes. It contains certain Civil Air Regulations (CAR) and Federal Aviation Regulations (formerly referred to as FARs) from Title 14 Code of Federal Regulations (CFR) in their current version as well as the historical versions. This gives the reader an ability to assemble certain CAR/CFR parts as they existed at any date in the past (referred to as a Regulatory Basis). A certain amount of preamble explanatory material is included, which led to the regulatory rule changes (Amendments to the CFR).
Standard

Aerospace Landing Gear Systems Terminology

2012-05-31
CURRENT
AIR1489C
This report has been compiled by the Landing Gear Systems Terminology Panel of SAE Committee A-5 (Aerospace Landing Gear Systems). It represents an effort to gather together those terms commonly used within the discipline. Some terms are of course common to other disciplines as well. Others, however, are unique in form and/or meaning to the landing gear discipline. The need has been noted to set these terms down and provide a standard definition in order that communication within the discipline may be conducted with a common understanding. Full use has been made of available published information, and a list of references is provided. See also References (a) to (e). Terms listed are usually applicable to a general functional area of landing gear disciplines. These general functional areas include; landing impact, directional ground control, velocity control (acceleration, retardation, and arrestment), structural support, ground flotation, and ground maintenance.
Standard

Rotorcraft: Application of Existing Aircraft Designed Tires, Wheels and Brakes

2010-01-06
CURRENT
ARP5632
This document covers recommendations for the application of existing qualified and approved in-service fixed wing aircraft tires, wheels and brakes to military and commercial rotorcraft. NOTE: This document does not address the use of radial tires due to insufficient data to support their approved use on rotorcraft, see paragraph 4.3.14 for specific impact on ground resonance.
Standard

Catalog of Landing Gear Systems and Suppliers

2009-02-19
HISTORICAL
AIR5631
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following aircraft types: wide body jet airliners, narrow body jet airliners, turboprop/commuter aircraft, cargo/transport aircraft and fighter/attack aircraft. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems.
Standard

Aerospace Landing Gear - FAA Regulatory History - Airplane Wheels, Tires, and Brakes

2007-08-02
HISTORICAL
AIR5697
This SAE Aerospace Information Report (AIR) contains regulatory and guidance information related to airplane wheels, tires, and brakes. It contains certain Civil Air Regulations (CAR) and Federal Aviation Regulations (formerly referred to as FARs) from Title 14 Code of Federal Regulations (CFR) in their current version as well as the historical versions. This gives the reader an ability to assemble certain CAR/CFR parts as they existed at any date in the past (referred to as a Regulatory Basis). A certain amount of preamble explanatory material is included, which led to the regulatory rule changes (Amendments to the CFR).
Standard

Landing Gear Storage

2005-04-18
CURRENT
ARP5936
This document categorizes the different types of storage requirements, either on the aircraft or new unused or overhauled on the shelf, for aircraft landing gears/components. Recommendations and examples of proper landing gear storage are outlined. Reclamation recommendations are provided for aircraft landing gear returning from long-term storage.
Standard

Recommended Practice for Measurement of Static Mechanical Stiffness Properties of Aircraft Tires

2002-02-28
CURRENT
AIR1380B
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
Standard

Aerospace Landing Gear Systems Terminology

2001-06-01
HISTORICAL
AIR1489B
This report has been compiled by the Landing Gear Systems Terminology panel of SAE Committee A-5 (Aerospace Landing Gear Systems). It represents an effort to gather together those terms commonly used within the discipline. Some terms are of course common to other disciplines as well. Others, however, are unique in form and/or meaning to the Landing Gear discipline. The need has been noted to set these terms down and provide a standard definition in order that communication within the discipline may be conducted with a common understanding. Full use has been made of available published information, and a list of references is provided. See also References (a) to (e). Terms listed are usually applicable to a general functional area of Landing Gear disciplines. These general functional areas include; landing impact, directional ground control, velocity control (acceleration, retardation, and arrestment), structural support, ground flotation, and ground maintenance.
Standard

Landing Gear System Development Plan

1997-03-01
HISTORICAL
ARP1598A
This Aerospace Recommended Practice (ARP) is therefore intended to document the process of landing gear system development. Some of the steps covered are mandatory and others are elective, or dependent upon customer requirements or desires. Economics is a very significant factor and for each analysis or test performed, more confidence and assurance of success is gained, but at a price. Some of the steps are performed as a matter of “good engineering practice” and without special recognition. Others are unique to the particular landing gear system and all together comprise a complete development.
X