Refine Your Search

Topic

Search Results

Standard

Landing Gear Structural Health Monitoring

2019-05-23
CURRENT
AIR6168A
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber (servicing), opportunities for corrosion detection, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. Landing gear tire condition and tire pressure monitoring are detailed in ARP6225, AIR4830, and ARP6137, respectively. Aircraft Brake Temperature Monitoring Systems (BTMS) are detailed in AS1145.
Standard

Landing Gear System Development Plan

2018-09-11
WIP
ARP1598C
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial, military, fixed wing and rotary wing air vehicles.
Standard

Environmentally Compliant Processes for Landing Gear

2017-07-14
CURRENT
AIR5479B
This SAE Aerospace Information Report (AIR) describes the performance of plating’s and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both Original Equipment Manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

A Guide to Landing Gear System Integration

2017-07-12
CURRENT
AIR5451A
The landing gear system is a major and safety critical airframe system that needs to be integrated efficiently to meet the overall aircraft program goals of minimizing the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large-scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft. The document structure is divided into four sections: Landing Gear System Configuration Requirements (Section 3) Landing Gear System Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear System Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements.
Standard

Aircraft Ground Flotation Analysis Methods

2016-12-01
CURRENT
ARP1821B
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft.
Standard

Landing Gear (Engine Off) Taxi System

2015-12-27
CURRENT
AIR6246
This SAE Aerospace Information Report (AIR) will review new landing gear (engine off) taxi system technologies currently being developed by various companies and describe the basic design concepts and potential benefits and issues. This AIR will identify the associated systems that could be affected by this new technology. The document will review basic design and operational requirements, failure modes and identify system certification requirements that may need to be addressed. The technology is evolving as this paper is being written and the data present is currently up to date as of 2015.
Standard

Catalog of Landing Gear Systems and Suppliers

2015-12-27
CURRENT
AIR5631A
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following commercial aircraft types; wide body jet airliners, narrow body jet airliners, and turboprop/commuter aircraft and the following military aircraft types; fighter, bomber, cargo, attack, surveillance, tanker and helicopter categories. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems. Future revisions of this document will add aircraft as they enter into service.
Standard

Landing Area/Landing Gear Compatibility - A Brief History of SAE/Corps of Engineers Cooperation

2014-12-01
CURRENT
AIR4243A
This document discusses the work done by the U.S. Army Corps of Engineers and the Waterways Experiment Station (WES) in support of SAE A-5 Committee activity on Aerospace Landing Gear Systems. It is an example of how seemingly unrelated disciplines can be combined effectively for the eventual benefit of the overall aircraft system, where that system includes the total airfield environment in which the aircraft must operate. In summary, this AIR documents the history of aircraft flotation analysis as it involves WES and the SAE.
Standard

Landing Gear System Development Plan

2013-04-01
CURRENT
ARP1598B
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial, military, fixed wing and rotary wing air vehicles.
Standard

Aerospace Landing Gear Systems Terminology

2012-05-31
CURRENT
AIR1489C
This report has been compiled by the Landing Gear Systems Terminology Panel of SAE Committee A-5 (Aerospace Landing Gear Systems). It represents an effort to gather together those terms commonly used within the discipline. Some terms are of course common to other disciplines as well. Others, however, are unique in form and/or meaning to the landing gear discipline. The need has been noted to set these terms down and provide a standard definition in order that communication within the discipline may be conducted with a common understanding. Full use has been made of available published information, and a list of references is provided. See also References (a) to (e). Terms listed are usually applicable to a general functional area of landing gear disciplines. These general functional areas include; landing impact, directional ground control, velocity control (acceleration, retardation, and arrestment), structural support, ground flotation, and ground maintenance.
Standard

Landing Gear Systems - Endurance Scatter Factor

2010-08-16
WIP
AIR6452
This information report will provide the reader with the thought processes and rationales employed by OEM's and gear manufacturers when specifying the scatter factor to apply to landing gear system components for endurance qualification testing.
Standard

Rotorcraft: Application of Existing Aircraft Designed Tires, Wheels and Brakes

2010-01-06
CURRENT
ARP5632
This document covers recommendations for the application of existing qualified and approved in-service fixed wing aircraft tires, wheels and brakes to military and commercial rotorcraft. NOTE: This document does not address the use of radial tires due to insufficient data to support their approved use on rotorcraft, see paragraph 4.3.14 for specific impact on ground resonance.
Standard

Landing Gear Alignment

2009-05-05
CURRENT
AIR5556
The purpose of this Aerospace Information Report is to provide the industry with methodologies for measuring tire/wheel gear alignment and the range of acceptable alignment settings for various types of non-military landing gear. This AIR will focus on the general aviation, corporate, and regional aircraft landing gear but could have applicability to commercial aircraft.
Standard

Catalog of Landing Gear Systems and Suppliers

2009-02-19
HISTORICAL
AIR5631
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following aircraft types: wide body jet airliners, narrow body jet airliners, turboprop/commuter aircraft, cargo/transport aircraft and fighter/attack aircraft. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems.
Standard

Environmentally Compliant Processes for Landing Gear

2007-07-26
HISTORICAL
AIR5479A
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

A Guide to Landing Gear System Integration

2005-12-14
HISTORICAL
AIR5451
The landing gear system is a major airframe system that needs to be integrated very efficiently to minimize the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft and is divided into four sections: Landing Gear Configuration Requirements (Section 3) Landing Gear Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements. Structural elements include shock struts, braces, fittings, pins, wheels, tires and brakes.
Standard

Recommended Practice for Measurement of Static Mechanical Stiffness Properties of Aircraft Tires

2002-02-28
CURRENT
AIR1380B
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
Standard

Environmentally Compliant Processes for Landing Gear

2002-02-15
HISTORICAL
AIR5479
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
X