Refine Your Search

Topic

Search Results

Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2019-03-06
WIP
ARP1070E
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control. It focuses on recommended practices specific to antiskid and its integration with the aircraft as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2, for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1. ARP4754, Guidelines for Development of Civil Aircraft and Systems 2. ARP4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment 3. RTCA DO-178, Software Considerations in Airborne Systems and Equipment Certification 4. RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware 5.
Standard

Replacement and Modified Brakes and Wheels

2016-10-21
CURRENT
ARP1619B
This SAE Aerospace Recommended Practice (ARP) defines recommended planning and substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety of the originally certified aircraft, and performance and aircraft compatibility are appropriately addressed in aircraft documentation. Successful demonstration also requires that failure modes be identified and mitigation provided for each. These procedures apply to modifications made by the original component or assembly supplier as well as approval of an alternate supplier.
Standard

Compilation of Freezing Brake Experience and Potential Designs and Operating Procedures to Prevent Its Occurrence

2016-05-24
CURRENT
AIR4762A
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
Standard

Carbon Brake Contamination and Oxidation

2016-04-12
CURRENT
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
Standard

Information on Parking Brake Systems

2015-07-17
CURRENT
AIR6441
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2014-11-11
CURRENT
ARP1070D
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control. It focuses on recommended practices specific to antiskid and its integration with the aircraft as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2, for generic aerospace best practices and requirements.
Standard

Information on Brake-By-Wire (BBW) Brake Control Systems

2014-07-29
CURRENT
AIR5372A
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems.
Standard

Brake Systems, Wheel, Military Aircraft

2013-11-01
CURRENT
AS8584B
This SAE Aerospace Standard (AS) defines the requirements for brake systems used on military aircraft equipped with wheel-type landing gears.
Standard

Wheel Roll on Rim Criteria for Aircraft Applications

2013-09-26
CURRENT
ARP1786C
This SAE Aerospace Recommended Practice (ARP) is to provide a recommended minimum laboratory roll performance for main landing gear aircraft wheels without tires installed and applies to both bolted and lock-ring wheel designs for FAA Part 25 and military aircraft main wheels (not required for any nose wheels or main wheels on FAA Part 23, 27 or 29 applications).
Standard

Skid Control System Vibration Survey

2012-09-05
CURRENT
AIR764D
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
Standard

USAF Aircraft Wheels

2012-07-19
CURRENT
AIR4012C
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
Standard

Information on Antiskid Systems

2012-02-15
CURRENT
AIR1739B
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2011-01-06
CURRENT
AS586C
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
X