Refine Your Search

Topic

Search Results

Standard

Maintainability Recommendations for Aircraft Wheel and Hydraulically Actuated Brake Design

2022-07-13
WIP
ARP813D

This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.

Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2020-09-17
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

Recommended Wheel Tie Bolt Preload Procedure

2020-09-17
CURRENT
ARP5481A
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
Standard

Maintainability Recommendations for Aircraft Wheel and Hydraulically Actuated Brake Design

2019-02-15
CURRENT
ARP813C
This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.
Standard

Braking System Dynamics

2016-11-16
CURRENT
AIR1064D
The aircraft landing gear is a complex multi-degree of freedom dynamic system, and may encounter vibration or dynamic response problems induced by braking action. The vibratory modes can be induced by brake and tire-ground frictional characteristics, antiskid operation, brake design features, landing gear design features, and tire characteristics. The impact of this vibration can range from catastrophic failure of critical system components or entire landing gears, to fatigue of small components, to passenger annoyance. It is therefore important that the vibration is assessed during the design concept phase, and verified during the development and testing phases of the system hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2016-09-14
CURRENT
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Skid Control System Vibration Survey

2012-09-05
CURRENT
AIR764D
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
Standard

USAF Aircraft Wheels

2012-07-19
CURRENT
AIR4012C
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2012-07-19
CURRENT
ARP5381A
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2012-05-09
HISTORICAL
AS1145B
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

USAF Aircraft Wheels

2012-05-09
HISTORICAL
AIR4012B
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
Standard

SKID CONTROL SYSTEM VIBRATION SURVEY

2008-06-16
HISTORICAL
AIR764C
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
Standard

Recommended Wheel Tie Bolt Preload Procedure

2007-08-09
HISTORICAL
ARP5481
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
X